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Abstract. This paper introduces TweetNaCl, a compact reimplementation of the NaCl library,
including all 25 of the NaCl functions used by applications. TweetNaCl is published on Twitter
and fits into just 100 tweets; the tweets are available from anywhere, any time, in an unsuspicious
way. Distribution via other social media, or even printed on a sheet of A4 paper, is also easily
possible.

TweetNaCl is human-readable C code; it is the smallest readable implementation of a high-
security cryptographic library. TweetNaCl is the first cryptographic library that allows correct
functionality to be verified by human auditors with reasonable effort, making it suitable for
inclusion into the trusted code base of a secure computer system.

TweetNaCl consists of a single C source file, accompanied by a single header file generated by
a short Python script (1811 bytes). The library can be trivially integrated into a wide range of
software build processes.

Portability and small code size come at a loss in efficiency, but TweetNaCl is sufficiently fast
for most applications. TweetNaCl’s cryptographic implementations meet the same security and
reliability standards as NaCl: for example, complete protection against cache-timing attacks.

Keywords: trusted code base, source-code size, auditability, software implementation, timing-
attack protection, NaCl, Twitter

1 Introduction

OpenSSL is the space shuttle of crypto libraries. It will get you to space, provided

you have a team of people to push the ten thousand buttons required to do so.

NaCl is more like an elevator—you just press a button and it takes you there. No

frills or options.

I like elevators. —Matthew D. Green, 2012 [15]

Cryptographic libraries form the backbone of security applications. The Networking and
Cryptography library (NaCl) [10], see nacl.cr.yp.to, is rapidly becoming the crypto library
of choice for a new generation of applications. NaCl is used, for example, in BitTorrent
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Live [12]; in DNSCrypt [21] from OpenDNS; in the secure mobile messaging app Threema [23];
and in the “new (faster and safer) NTor” protocol [14], the new default for Tor [24].

There are several reasons that NaCl has attracted attention. NaCl presents the developer
with a high-level API: for example, all of the work necessary for signing a message is integrated
into NaCl’s crypto_sign function, and all of the work necessary for public-key authenticated
encryption is integrated into NaCl’s crypto_box function. For each of these functionalities
NaCl provides exactly one default combination of cryptographic primitives selected for high
security and easy protection against timing attacks. For comparison, OpenSSL [22] provides
the implementor with a minefield of options, including many combinations that are broken
by timing attacks and many combinations that provide no security at all.

NaCl is also much faster than OpenSSL. For example, on one core of a 2.5GHz Intel Core
i5-3210M Ivy Bridge CPU, OpenSSL’s RSA-2048 encryption takes 0.13 million cycles but
RSA-2048 decryption takes 4.2 million cycles and elliptic-curve encryption/decryption (DH)
takes 0.7 million cycles. NaCl’s elliptic-curve encryption/decryption takes just 0.18 million
cycles. Both NaCl and OpenSSL include optimized assembly-language implementations, but
NaCl uses state-of-the-art primitives that inherently allow higher speed than the primitives
included in OpenSSL: in this case, the Curve25519 elliptic curve rather than the NIST P-256
elliptic curve or lower-security RSA-2048. This performance gap is not limited to high-end
Intel CPUs: see [11] for a performance analysis of the same primitives on the ARM Cortex-A8
CPU core used in the iPad 1 and iPhone 4 three years ago and in the low-cost BeagleBone
Black today.

However, NaCl’s performance comes at a price. A single NaCl function usually consists
of several different implementations, often including multiple assembly-language implementa-
tions optimized for different CPUs. NaCl’s compilation system is correspondingly complicated.
Auditing the NaCl source is a time-consuming job. For example, four implementations of the
ed25519 signature system have been publicly available and waiting for integration into NaCl
since 2011, but in total they consist of 5521 lines of C code and 16184 lines of qhasm code.
Partial audits have revealed a bug in this software (r1 += 0 + carry should be r2 += 0

+ carry in amd64-64-24k) that would not be caught by random tests; this illustrates the
importance of audits. There has been some progress towards computer verification of formal
proofs of correctness of software, but this progress is still far from complete verification of a
usable high-security cryptographic library.

TweetNaCl: a small reimplementation of NaCl. This paper introduces TweetNaCl
(pronounced “tweet salt”), a reimplementation of all 25 C NaCl functions used by applications.
Each TweetNaCl function has exactly the same interface and semantics as the C NaCl function
by the same name. (NaCl also includes an alpha-test networking component and support for
languages other than C; TweetNaCl does not attempt to imitate these features.)

What distinguishes TweetNaCl from NaCl, and from other cryptographic libraries, is
TweetNaCl’s conciseness. We have posted TweetNaCl at https://twitter.com/TweetNaCl
as a sequence of just 100 tweets. The tweets are also shown in Appendix A of this paper. The
tweets, plus 1 byte at the end of each line, occupy a total of 13438 bytes.

What we actually wrote was a slightly less compact 809-line 16621-byte tweetnacl.c. We
then wrote a simple Python script, shown in Appendix B, to remove unnecessary spaces and
produce the tweet form of TweetNaCl shown in Appendix A. Developers using TweetNaCl
are expected to feed the tweet form of TweetNaCl through any standard indentation program,
such as the UNIX indent program, to produce something similar to the original tweetnacl.c.

https://twitter.com/TweetNaCl


TweetNaCl: A crypto library in 100 tweets 3

An accompanying 1811-byte Python script, shown in Appendix C, prints a tweetnacl.h

that declares all the functions in tweetnacl.c, together with the same set of macros provided
by NaCl. NaCl actually splits these declarations and macros into a moderately large collection
of .h files such as crypto_box.h, crypto_box_curve25519xsalsa20poly1305.h, etc.; we
have a similar Python script that creates the same collection of .h files, but switching to
tweetnacl.h is minimal effort for developers.

TweetNaCl is not “obfuscated C”: in indented form it is easily human-readable. It does
use two macros and five typedefs, for example to abbreviate for (i = 0;i < n;++i) as
FOR(i,n) and to abbreviate unsigned char as u8, but we believe that these abbreviations
improve readability, and any readers who disagree can easily remove the abbreviations.

TweetNaCl is not merely human-readable; it is human-auditable. TweetNaCl is short
enough and simple enough for humans to audit against a mathematical description of the
functionality in NaCl such as [2]. TweetNaCl makes it possible to audit the complete cryp-
tographic portion of the trusted code base of a computer system. Of course, compilers also
need to be audited (or to produce proofs of correct translations), as do other critical system
components.

TweetNaCl is secure and reliable. TweetNaCl is a C library containing the same pro-
tections as NaCl against simple timing attacks, cache-timing attacks, etc. It has no branches
depending on secret data, and it has no array indices depending on secret data. We do not
want developers to be faced with a choice between TweetNaCl’s conciseness and NaCl’s se-
curity.

TweetNaCl is also thread-safe, and has no dynamic memory allocation. TweetNaCl, like
C NaCl, stores all temporary variables in limited areas of the stack. There are no hidden
failure cases: TweetNaCl reports forgeries in the same way as C NaCl, and is successful in all
other cases.

TweetNaCl’s functions compute the same outputs as C NaCl: the libraries are compatible.
We have verified all TweetNaCl functions against the NaCl test suite.

TweetNaCl is portable and easy to integrate. Another advantage of TweetNaCl’s con-
ciseness is that developers can simply add tweetnacl.c and tweetnacl.h into their appli-
cations, without worrying about complicated configuration systems or dependencies upon
external libraries. TweetNaCl works straightforwardly with a broad range of compilation sys-
tems, including cross-compilation systems, and runs on any device that can compile C. We
comment that TweetNaCl also provides another form of portability, namely literal portability,
while maintaining literal readability: TweetNaCl fits onto a single sheet of paper in a legible
font size.

For comparison, the Sodium library from Denis [13] is a “portable, cross-compilable, instal-
lable, packageable fork of NaCl, with a compatible API”; current libsodium-0.4.5.tar.gz
has 540467 bytes and unpacks into 381 files totaling 2524003 bytes. Many NaCl applications
(e.g., DNSCrypt), and 14 NaCl bindings for various languages, are actually using Sodium.
TweetNaCl is similar to Sodium in being portable, cross-compilable, installable, and pack-
ageable; but TweetNaCl has the added advantage of being so small that it can be trivially
incorporated into applications by inclusion rather than by reference. We have placed Tweet-
NaCl into the public domain, and we encourage applications to make use of it.

The first version of Sodium was obtained by reducing NaCl to its reference implementa-
tions, removing all of the optimized implementations, and simplifying the build system ac-
cordingly. We emphasize that this does not produce anything as concise as TweetNaCl. The
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remaining sections of this paper describe the techniques we used to reduce the complexity of
the TweetNaCl code, compared to the NaCl reference implementations.

TweetNaCl is fast enough for typical applications. TweetNaCl’s focus on code size
means that TweetNaCl cannot provide optimal run-time performance; NaCl’s optimized as-
sembly is often an order of magnitude faster. However, TweetNaCl is sufficiently fast for
most cryptographic applications. Most applications can tolerate the 4.2 million cycles that
OpenSSL uses on an Ivy Bridge CPU for RSA-2048 decryption, for example, so they can
certainly tolerate the 2.5 million cycles that TweetNaCl uses for higher-security decryption
(Curve25519). Note that, at a typical 2.5GHz CPU speed, this is 1000 decryptions per second
per CPU core. One can of course find examples of busy applications that need the higher
performance of NaCl, but those examples do not affect the usability of TweetNaCl in typical
lower-volume cryptographic applications.

Of course, it would be better for compilers to turn concise source code into optimal object
code, so that there is no need for optimized assembly in the first place. We leave this as a
challenge for language designers and compiler writers.

TweetNaCl is also small after compilation. TweetNaCl remains reasonably small when
compiled, even though this was not its primary goal. For example, when TweetNaCl is com-
piled with gcc -Os on an Intel CPU, it takes only 12745 bytes. Small compiled code has
several benefits: perhaps most importantly, it avoids instruction-cache misses, both for its
own startup and for other code that would otherwise have been kicked out of cache. Note
that typical cryptographic benchmarks ignore these costs.

For some C compilers, putting all of TweetNaCl into a single .c file prevents separate
linking: the final binary will include all TweetNaCl functions even if not all of those functions
are used. Any developers who care about the penalty here could comment out the unused
code, but TweetNaCl is so small that this penalty is negligible in the first place.

On some platforms, code is limited in total size, not just in the amount that can be
cached. This was the motivation for Hutter and Schwabe to reimplement NaCl to fit into
the limited flash storage and RAM available on AVR microcontrollers [18]. Their low-area
implementation consists of several thousand lines written in assembly and compiles to 17366
bytes; they also have faster implementations using somewhat more area. TweetNaCl compiles
to somewhat more code, 29608 bytes on the same platform, but is much easier to read and
to verify, especially since the verification work for TweetNaCl is shared across platforms.

TweetNaCl is a full library, not just isolated functions. In June 2013, Green [16]
announced a new contest to “identify useful cryptographic algorithms that can be formally
described in one Tweet.” TweetNaCl is inspired by, but not a submission to, this contest.
Unlike the submissions in that Twitter thread, later submissions using #C1T on Twitter, or
TweetCipher [1] (authenticated encryption in 6 tweets, but with an experimental cryptosystem
cobbled together for the sole purpose of being short), TweetNaCl provides exactly NaCl’s high-
level high-security cryptographic operations. TweetNaCl includes all necessary conversions
to and from wire format, modular arithmetic from scratch, etc., using nothing but the C
language.

TweetNaCl provides extremely high source-code availability. In 1995, at the height of
the crypto wars, the United States government regarded cryptographic software as arms and
subjected it to severe export control. In response, Zimmermann published the PGP software
as a printed book [27]. The export-control laws did not cover printed material, so the book
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crypto_box = crypto_box_curve25519xsalsa20poly1305

crypto_box_open

crypto_box_keypair

crypto_box_beforenm

crypto_box_afternm

crypto_box_open_afternm

crypto_core_salsa20

crypto_core_hsalsa20

crypto_hashblocks = crypto_hashblocks_sha512

crypto_hash = crypto_hash_sha512

crypto_onetimeauth = crypto_onetimeauth_poly1305

crypto_onetimeauth_verify

crypto_scalarmult = crypto_scalarmult_curve25519

crypto_scalarmult_base

crypto_secretbox = crypto_secretbox_xsalsa20poly1305

crypto_secretbox_open

crypto_sign = crypto_sign_ed25519

crypto_sign_open

crypto_sign_keypair

crypto_stream = crypto_stream_xsalsa20

crypto_stream_xor

crypto_stream_salsa20

crypto_stream_salsa20_xor

crypto_verify_16

crypto_verify_32

Fig. 1. Functions supported by TweetNaCl.

could be shipped abroad. Producing usable PGP software from the printed copies (see [26])
required hours of volunteer work to OCR and proofread over 6000 pages of code.

TweetNaCl fits onto just 1 page. This conciseness opens up many new possibilities for
software distribution, ensuring the permanent availability of TweetNaCl to users worldwide,
even users living under regimes that have decided to censor our 100 tweets. Of course, PGP is a
full-fledged cryptographic application rather than just a cryptographic library, but we expect
TweetNaCl to enable a broad spectrum of small high-security cryptographic applications.

Functions supported by TweetNaCl. Simple NaCl applications need only six high-level
NaCl functions: crypto_box for public-key authenticated encryption; crypto_box_open for
verification and decryption; crypto_box_keypair to create a public key in the first place;
and similarly crypto_sign, crypto_sign_open, crypto_sign_keypair.

A minimalist implementation of the NaCl API would provide just these six functions.
TweetNaCl is more ambitious, supporting all 25 of the NaCl functions listed in Table 1, which
as mentioned earlier are all of the C NaCl functions used by applications. This list includes all
of NaCl’s “default” primitives except for crypto_auth_hmacsha512256, which was included
in NaCl only for compatibility with standards and is superseded by crypto_onetimeauth.

As mentioned earlier, the Ed25519 signature system has not yet been integrated into
NaCl, since the Ed25519 software has not yet been fully audited; NaCl currently provides an
older signature system. However, NaCl has announced that it will transition to Ed25519, so
TweetNaCl provides Ed25519.

In surveying NaCl applications we have found two main reasons that applications go
beyond the minimal list of six functions. First, many NaCl applications split (e.g.) crypto_box
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into crypto_box_beforenm and crypto_box_afternm to improve speed. Second, some NaCl
applications are experimenting with variations of NaCl’s high-level operations but continue
to use lower-level NaCl functions such as crypto_secretbox and crypto_hash.

It is important for all of these applications to continue to work with TweetNaCl. The
challenge here is the code size required to provide many functions. Even a single very simple
function such as

int crypto_box_beforenm(u8 *k,const u8 *y,const u8 *x)

{

u8 s[32];

crypto_scalarmult(s,x,y);

return crypto_core_hsalsa20(k,z,s,sigma);

}

costs us approximately 1 tweet. We could use shorter function names internally, but we would
then need further wrappers to provide all the external function names listed in Table 1. We
have many such functions, and a limited tweet budget, limiting the space available for actual
cryptographic computations.

2 Salsa20, HSalsa20, and XSalsa20

NaCl encrypts messages by xor’ing them with the output of Bernstein’s Salsa20 [5] stream
cipher. The Salsa20 stream cipher generates 64-byte output blocks using the Salsa20 “core
function” in counter mode. The main loop in NaCl’s reference implementation of the Salsa20
core function, crypto_core/salsa20/ref/core.c, transforms 16 32-bit words x0, x1, . . . ,
x15 as follows, where ROUNDS is 20:

for (i = ROUNDS;i > 0;i -= 2) {

x4 ^= rotate( x0+x12, 7); x8 ^= rotate( x4+ x0, 9);

x12 ^= rotate( x8+ x4,13); x0 ^= rotate(x12+ x8,18);

x9 ^= rotate( x5+ x1, 7); x13 ^= rotate( x9+ x5, 9);

x1 ^= rotate(x13+ x9,13); x5 ^= rotate( x1+x13,18);

x14 ^= rotate(x10+ x6, 7); x2 ^= rotate(x14+x10, 9);

x6 ^= rotate( x2+x14,13); x10 ^= rotate( x6+ x2,18);

x3 ^= rotate(x15+x11, 7); x7 ^= rotate( x3+x15, 9);

x11 ^= rotate( x7+ x3,13); x15 ^= rotate(x11+ x7,18);

x1 ^= rotate( x0+ x3, 7); x2 ^= rotate( x1+ x0, 9);

x3 ^= rotate( x2+ x1,13); x0 ^= rotate( x3+ x2,18);

x6 ^= rotate( x5+ x4, 7); x7 ^= rotate( x6+ x5, 9);

x4 ^= rotate( x7+ x6,13); x5 ^= rotate( x4+ x7,18);

x11 ^= rotate(x10+ x9, 7); x8 ^= rotate(x11+x10, 9);

x9 ^= rotate( x8+x11,13); x10 ^= rotate( x9+ x8,18);

x12 ^= rotate(x15+x14, 7); x13 ^= rotate(x12+x15, 9);

x14 ^= rotate(x13+x12,13); x15 ^= rotate(x14+x13,18);

}

Notice that this loop involves 96 x indices: x4, x0, x12, x8, x4, etc. TweetNaCl handles the
same loop much more concisely:
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FOR(i,20) {

FOR(j,4) {

FOR(m,4) t[m] = x[(5*j+4*m)%16];

t[1] ^= rotate(t[0]+t[3], 7); t[2] ^= rotate(t[1]+t[0], 9);

t[3] ^= rotate(t[2]+t[1],13); t[0] ^= rotate(t[3]+t[2],18);

FOR(m,4) w[4*j+(j+m)%4] = t[m];

}

FOR(m,16) x[m] = w[m];

}

We emphasize two levels of Salsa20 symmetry that appear in the Salsa20 specification and
that are expressed explicitly in this TweetNaCl loop. First, the 20 rounds in Salsa20 alternate
between “column rounds” and “row rounds”, with column rounds operating on columns of
the 4× 4 matrix









x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[8] x[9] x[10] x[11]

x[12] x[13] x[14] x[15]









and row rounds operating in exactly the same way on rows of the matrix. TweetNaCl computes
a row round as a transposition of the matrix followed by a column round followed by another
transposition; i.e., the 20 rounds consist of 20 iterations of “compute a column round and
transpose the output”. The transposed result of each round is built in a separate array w to
avoid overwriting the round input; it is then copied from w back to x. One can easily see that
the indices 4*j+(j+m)%4 for w are the transposes of the indices (5*j+4*m)%16 for x.

Second, the column round operates on the column down from x[0], operates in the same
way on the column down from x[5] (wrapping around to x[1]), operates in the same way
on the column down from x[10], and operates in the same way on the column down from
x[15]. TweetNaCl has j loop over the 4 columns; the x index (5*j+4*m)%16 is m columns
down from the starting point in column j.

For comparison, the indices in the second half of the NaCl loop shown above are the
transposes of the indices in the first half, and the indices in the first half have these symmetries
across columns. Verifying these 96 indices is of course feasible but takes considerably more
time than verifying the corresponding segment of TweetNaCl code—and this is just the first of
many ways in which NaCl’s reference implementations consume more code than TweetNaCl.

Stream generation and stream encryption. NaCl actually has two ways to use Salsa20:
crypto_stream_salsa20 produces any desired number of bytes of the Salsa20 output stream;
crypto_stream_salsa20_xor produces a ciphertext from a plaintext. Both of these functions
are wrappers around crypto_core_salsa20; both functions handle initialization and updates
of the block counter, and output lengths that are not necessarily multiples of 64. The difference
is that the second function xors each block with a plaintext block, moving along the plaintext
accordingly.

In TweetNaCl, crypto_stream_salsa20 simply calls crypto_stream_salsa20_xor with
a null pointer for the plaintext. This eliminates essentially all the duplication of code between
these two functions, at the expense of three small tweaks to crypto_stream_salsa20_xor,
such as replacing

FOR(i,64) c[i] = m[i] ^ x[i];
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with

FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];

to treat a null pointer m as if it were a pointer to an all-0 block.

XSalsa20 and HSalsa20. NaCl’s crypto_stream actually uses Bernstein’s XSalsa20 stream
cipher (see [6]) rather than the Salsa20 stream cipher. The difference is that XSalsa20 supports
32 bytes of nonce/counter input while Salsa20 supports only 16 bytes of nonce/counter input.
XSalsa20 uses the original 32-byte key and the first 16 bytes of the nonce to generate an
intermediate 32-byte key, and then uses Salsa20 with the intermediate key and the remaining
16 bytes of nonce/counter to generate each output block.

The intermediate key generation, called “HSalsa20”, is similar to Salsa20 but slightly more
efficient, and has a separate implementation in NaCl. For our purposes this is a problem: it
means almost doubling the code size.

TweetNaCl does better by viewing HSalsa20 as (1) generating a 64-byte Salsa20 output
block, (2) extracting 32 bytes from particular output positions, and then (3) transforming
those 32 bytes in a public invertible way. The transformation is much more concise than a sepa-
rate HSalsa20 implementation, allowing TweetNaCl to implement both crypto_core_salsa20
and crypto_core_hsalsa20 as wrappers around a unified core function.

We do not claim novelty for this view of HSalsa20: the same structure is exactly what
allowed the proof in [6] that the security of Salsa20 implies the security of HSalsa20 and
XSalsa20. What is new is the use of this structure to simplify a unified Salsa20/HSalsa20
implementation.

3 Poly1305

Secret-key authentication in NaCl uses Bernstein’s Poly1305 [3] authenticator. The Poly1305
code in the NaCl reference implementation is already quite concise. For elements of F2130−5

it uses a radix-28 representation; we use the same representation for TweetNaCl.
The NaCl reference implementation uses a mulmod function for multiplication in F2130−5,

a squeeze function to perform two carry chains after multiplication and a freeze function
to produce a unique representation of an element of F2130−5. Each of these functions is called
only once in the Poly1305 main loop; we inline those functions to remove code for the function
header and the call. The reference implementation also uses an add function which is called
once in the main loop, once during finalization and once inside the freeze function. We keep
the function, but rename it to add1305 to avoid confusion with the add function used (as
described in Section 5) for elliptic-curve addition.

We furthermore shorten the code of modular multiplication. NaCl’s reference implemen-
tation performs multiplication of h by r with the result in hr as follows:

for (i = 0;i < 17;++i) {

u = 0;

for (j = 0;j <= i;++j)

u += h[j] * r[i - j];

for (j = i + 1;j < 17;++j)

u += 320 * h[j] * r[i + 17 - j];

hr[i] = u;

}
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This piece of code exploits the fact that 2136 ≡ 320 (mod 2130 − 5) for modular reduction
on the fly. TweetNaCl merges the two inner loops:

FOR (i, 17) {

x[i] = 0;

FOR (j, 17)

x[i] += h[j] * ((j <= i) ? r[i - j] : 320 * r[i + 17 - j]);

}

4 SHA-512

The default hash function in NaCl and the hash function used within the Ed25519 signature
scheme (see Section 5) is SHA-512 [25]. The SHA-512 code in the NaCl reference implemen-
tation consists of two main portions of code:

– The function crypto hash, which performs initialization of the hash value with the IV
and computation of padding; and

– the crypto hashblocks function which performs hashing of full blocks.

Padding. Outside of crypto_hashblocks, the most complex part of crypto_hash is the
message padding. The reference padding code, with TweetNaCl’s choices of variable names
substituted for the original choices, is as follows:

for (i = 0;i < n;++i) x[i] = m[i];

x[n] = 0x80;

if (n < 112) {

for (i = n + 1;i < 119;++i) x[i] = 0;

x[119] = b >> 61;

x[120] = b >> 53; x[121] = b >> 45;

x[122] = b >> 37; x[123] = b >> 29;

x[124] = b >> 21; x[125] = b >> 13;

x[126] = b >> 5; x[127] = b << 3;

crypto_hashblocks(h,x,128);

} else {

for (i = n + 1;i < 247;++i) x[i] = 0;

x[247] = b >> 61;

x[248] = b >> 53; x[249] = b >> 45;

x[250] = b >> 37; x[251] = b >> 29;

x[252] = b >> 21; x[253] = b >> 13;

x[254] = b >> 5; x[255] = b << 3;

crypto_hashblocks(h,x,256);

}

This segment handles two possibilities for processing the final partial block of SHA-512
input: if the block has fewer than 112 bytes then it is padded to 128 bytes; otherwise it is
padded to 256 bytes. The padding ends with a 9-byte big-endian encoding of the number of
message bits.
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TweetNaCl simplifies this code in three ways. First, it eliminates the two separate lines of
zero-padding x in favor of initializing the whole array to 0. Second, elsewhere in TweetNaCl
there is a ts64 function (used at the end of the SHA-512 compression function) that stores 64
bits in big-endian form; TweetNaCl reuses this function inside the padding. Third, TweetNaCl
merges the two branches, reusing n (which has no later use) for the number of bytes in the
padded block. The final padding code is much more concise than the original:

FOR(i,256) x[i] = 0;

FOR(i,n) x[i] = m[i];

x[n] = 128;

n = 256-128*(n<112);

x[n-9] = b >> 61;

ts64(x+n-8,b << 3);

crypto_hashblocks(h,x,n);

Hashing blocks. SHA-512 performs 80 rounds of computation per block. The NaCl reference
implementation has 80 lines for these 80 rounds. Each round is just one invocation of an F

macro (interruped by invocations of an EXPAND macro after every 16 rounds), but this still
results in a significant amount of code. TweetNaCl instead uses a loop over the 80 rounds.
With such a “rolled” loop there is only one invocation of each of the macros, so TweetNaCl
inlines those.

In NaCl the 16 64-bit message words are loaded into variables w0, w1, . . . , w15; the internal
temporary state is kept in variables a, b, . . . , h. TweetNaCl uses arrays u64 w[16] and u64

a[8] instead. This allows us to also roll all initialization and copy loops. The final code for
processing one 128-byte block is the following:

FOR(i,16) w[i] = dl64(m + 8 * i);

FOR(i,80) {

FOR(j,8) b[j] = a[j];

t = a[7] + Sigma1(a[4]) + Ch(a[4],a[5],a[6]) + K[i] + w[i%16];

b[7] = t + Sigma0(a[0]) + Maj(a[0],a[1],a[2]);

b[3] += t;

FOR(j,8) a[(j+1)%8] = b[j];

if (i%16 == 15)

FOR(j,16)

w[j] += w[(j+9)%16] + sigma0(w[(j+1)%16]) + sigma1(w[(j+14)%16]);

}

FOR(i,8) { a[i] += z[i]; z[i] = a[i]; }

Obviously there is still some complexity in this code, but this directly reflects the inherent
complexity of the SHA-512 function; the SHA-512 specification [25] is easily verified to match
TweetNaCl’s implementation. The functions Sigma1, Ch, Sigma0, Maj, sigma0, and sigma1

are one-line implementations of the functions Σ1, Ch, Σ0, Maj, σ0, and σ1 from the SHA-512
specification.
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5 Curve25519 and Ed25519

Asymmetric cryptography in NaCl uses Bernstein’s Curve25519 elliptic-curve Diffie-Hellman
key exchange [4] and will use the Ed25519 elliptic-curve signature scheme from Bernstein,
Duif, Lange, Schwabe, and Yang [7,8]. This section explains the techniques we use for our
compact implementation of these two schemes.

Arithmetic in F2255
−19. Both Curve25519 and Ed25519 require arithmetic in the field

F2255−19. We represent an element of this finite field as an array of 16 signed 64-bit integers
(datatype signed long long) in radix 216:

typedef i64 gf[16];

Additions and subtractions do not have to worry about carries or modular reduction; they
simply turn into a loop that performs 16 coefficient additions or subtractions.

Multiplication performs simple “operand scanning” schoolbook multiplication in two nested
loops. We then reduce modulo 2256 − 38:

i64 i,j,t[31];

FOR(i,31) t[i]=0;

FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];

FOR(i,15) t[i]+=38*t[i+16];

FOR(i,16) o[i]=t[i];

The 16 result coefficients in o are too large to be used as input to another multiplication. We
use two calls to a car25519 carry function to solve this problem. This carry function modifies
the result o in place as follows:

FOR(i,16) {

o[i] += (1LL<<16);

c = o[i]>>16;

o[(i+1)*(i<15)] += c-1+37*(c-1)*(i==15);

o[i] -= c<<16;

}

Aside from carrying from one limb to the next, the function also adds 216 to each limb and
subtracts 1 from the next highest limb before performing the carry. This ensures that repeated
application of the function brings all limbs into the interval [0, 216−1]. Without this addition,
repeated application of the carry chain would bring all limbs into the interval [−216−1, 216−1].
We use this additional functionality to “freeze” field elements to a unique representation at
the very end of the Curve25519 or Ed25519 computations.

We reuse the multiplication for squarings, but make squarings explicit by spending a few
bytes of source code for a separate function that simply calls multiplication. This makes it
easy during code audit to compare the code to elliptic-curve addition formulas, for example
from the Explicit Formulas Database [9]. To match the notation of [9] we use the names M
and S for functions that multiply and square in the field F2255−19; we also use A for addition
and Z for subtraction.

Inversion uses Fermat’s little theorem and is implemented through exponentation with
2255 − 21. We use a simple square-and-multiply algorithm and avoid storing the exponent by
making use of its special shape: it has all bits set but the bits at position 4 and position 2.
We perform the square-and-multiply loop for inversion as follows:
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for(a=253;a>=0;a--) {

S(c,c);

if(a!=2&&a!=4) M(c,c,i);

}

The square-root computation for elliptic-curve point decompression in Ed25519 uses ex-
ponentiation by 2252 − 3. See [7, Section 5]. Observe that this exponent has all bits set but
the bit at position 1; we use the same approach as for inversion.

Curve arithmetic. The typical Curve25519 implementation computes a Montgomery lad-
der [19] on the Montgomery curve M : y2 = x3 + 486662x2 + x. The Ed25519 signa-
ture scheme performs arithmetic on the birationally equivalent twisted Edwards curve E :
−x2 + y2 = 1− 121665

121666
x2y2. More specifically, Ed25519 key generation and signing perform a

fixed-basepoint scalar multiplication; verification performs a double-scalar multiplication.

In principle we could use the same scalar-multiplication code for both Curve25519 and
Ed25519. This would require conversion of points on M to points on E and back. If we
used the x-coordinate-based differential addition ladder of Curve25519 also for Ed25519, we
would additionally need code to recover the y-coordinate as described by Okeya and Sakurai
in [20]. Conversion code is not substantially shorter than the code required for the Curve25519
Montgomery ladder, so we decided to not use the same code for scalar multiplication in
Curve25519 and Ed25519.

Curve25519 uses the same Montgomery ladder as the reference implementation, except
that we do not use a dedicated function for multiplication by the constant 121666. For Ed25519
we decided to use only one scalar-multiplication routine that can be used in key generation,
signing, and verification. We represent points on E in extended coordinates as described
in [17] and implement the complete addition law in an add function. We use this function for
both addition and doubling of points. The scalar multiplication then performs a ladder of 256
steps; each step performs an addition and a doubling:

set25519(p[0],gf0);

set25519(p[1],gf1);

set25519(p[2],gf1);

set25519(p[3],gf0);

for (i = 255;i >= 0;--i) {

u8 b = (s[i/8]>>(i&7))&1;

cswap(p,q,b);

add(q,p);

add(p,p);

cswap(p,q,b);

}

The first four lines set the point p to the neutral element. The cswap function performs a
constant-time conditional swap of p and q depending on the scalar bit that has been extracted
into b before. The constant-time swap calls sel25519 for each of the 4 coordinates of p

and q. The function sel25519 is reused in conditional swaps for the Montgomery ladder in
Curve25519 and performs a constant-time conditional swap of field elements as follows:

sv sel25519(gf p,gf q,int b)
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{

i64 t,i,c=~(b-1);

FOR(i,16) {

t = c & (p[i]^q[i]);

p[i] ^= t;

q[i] ^= t;

}

}

Arithmetic modulo the group order. Signing requires reduction of a 512-bit integer
modulo the order of the Curve25519 group, a prime p = 2252 + δ where δ ≈ 2124.38. We store
this integer as a sequence of limbs in radix 28. We eliminate the top limb of the integer,
say 2504b, by subtracting 2504b and also subtracting 2252δb; we then perform a partial carry
so that 20 consecutive limbs are each between −27 and 27. We repeat this procedure to
eliminate subsequent limbs from the top. This is considerably more concise than typical
reduction methods:

for (i = 63;i >= 32;--i) {

carry = 0;

for (j = i - 32;j < i - 12;++j) {

x[j] += carry - 16 * x[i] * L[j - (i - 32)];

carry = (x[j] + 128) >> 8;

x[j] -= carry << 8;

}

x[j] += carry;

x[i] = 0;

}

We similarly eliminate any remaining multiple of 2252, leaving an integer between −1.1 · 2251

and 1.1 ·2251 . We then multiply the final carry bit by p and add, obtaining an integer between
0 and p− 1, and carry in the traditional way so that each limb is between 0 and 255.
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A The 100 tweets

#include "tweetnacl.h"
#define FOR(i,n) for (i = 0;i < n;++i)
#define sv static void
typedef unsigned char u8;typedef unsigned long u32;typedef unsigned long long u64;typedef long long i64;typedef i64 gf[16];extern void
randombytes(u8*,u64);static const u8 _0[16],_9[32]={9};static const gf gf0,gf1={1},_121665={0xDB41,1},D={0x78a3,0x1359,0x4dca,0x75eb,0xd8ab,
0x4141,0x0a4d,0x0070,0xe898,0x7779,0x4079,0x8cc7,0xfe73,0x2b6f,0x6cee,0x5203},D2={0xf159,0x26b2,0x9b94,0xebd6,0xb156,0x8283,0x149a,0x00e0,
0xd130,0xeef3,0x80f2,0x198e,0xfce7,0x56df,0xd9dc,0x2406},X={0xd51a,0x8f25,0x2d60,0xc956,0xa7b2,0x9525,0xc760,0x692c,0xdc5c,0xfdd6,0xe231,
0xc0a4,0x53fe,0xcd6e,0x36d3,0x2169},Y={0x6658,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,
0x6666,0x6666},I={0xa0b0,0x4a0e,0x1b27,0xc4ee,0xe478,0xad2f,0x1806,0x2f43,0xd7a7,0x3dfb,0x0099,0x2b4d,0xdf0b,0x4fc1,0x2480,0x2b83};static
u32 L32(u32 x,int c){return(x<<c)|(x>>(32-c));}static u32 ld32(const u8*x){u32 u=x[3];u=(u<<8)|x[2];u=(u<<8)|x[1];return(u<<8)|x[0];}static
u64 dl64(const u8*x){u64 i,u=0;FOR(i,8)u=(u<<8)|x[i];return u;}sv st32(u8*x,u32 u){int i;FOR(i,4){x[i]=u;u>>=8;}}sv ts64(u8*x,u64 u){int i;
for(i=7;i>=0;--i){x[i]=u;u>>=8;}}static int vn(const u8*x,const u8*y,int n){u32 i,d=0;FOR(i,n)d|=x[i]^y[i];return(1&((d-1)>>8))-1;}int
crypto_verify_16(const u8*x,const u8*y){return vn(x,y,16);}int crypto_verify_32(const u8*x,const u8*y){return vn(x,y,32);}sv core(u8*out,
const u8*in,const u8*k,const u8*c,int h){u32 w[16],x[16],y[16],t[4];int i,j,m;FOR(i,4){x[5*i]=ld32(c+4*i);x[1+i]=ld32(k+4*i);x[6+i]=ld32(in+
4*i);x[11+i]=ld32(k+16+4*i);}FOR(i,16)y[i]=x[i];FOR(i,20){FOR(j,4){FOR(m,4)t[m]=x[(5*j+4*m)%16];t[1]^=L32(t[0]+t[3],7);t[2]^=L32(t[1]+t[0],9
);t[3]^=L32(t[2]+t[1],13);t[0]^=L32(t[3]+t[2],18);FOR(m,4)w[4*j+(j+m)%4]=t[m];}FOR(m,16)x[m]=w[m];}if(h){FOR(i,16)x[i]+=y[i];FOR(i,4){x[5*i]
-=ld32(c+4*i);x[6+i]-=ld32(in+4*i);}FOR(i,4){st32(out+4*i,x[5*i]);st32(out+16+4*i,x[6+i]);}}else FOR(i,16)st32(out+4*i,x[i]+y[i]);}int
crypto_core_salsa20(u8*out,const u8*in,const u8*k,const u8*c){core(out,in,k,c,0);return 0;}int crypto_core_hsalsa20(u8*out,const u8*in,const
u8*k,const u8*c){core(out,in,k,c,1);return 0;}static const u8 sigma[16]="expand 32-byte k";int crypto_stream_salsa20_xor(u8*c,const u8*m,u64
b,const u8*n,const u8*k){u8 z[16],x[64];u32 u,i;if(!b)return 0;FOR(i,16)z[i]=0;FOR(i,8)z[i]=n[i];while(b>=64){crypto_core_salsa20(x,z,k,
sigma);FOR(i,64)c[i]=(m?m[i]:0)^x[i];u=1;for(i=8;i<16;++i){u+=(u32)z[i];z[i]=u;u>>=8;}b-=64;c+=64;if(m)m+=64;}if(b){crypto_core_salsa20(x,z,
k,sigma);FOR(i,b)c[i]=(m?m[i]:0)^x[i];}return 0;}int crypto_stream_salsa20(u8*c,u64 d,const u8*n,const u8*k){return
crypto_stream_salsa20_xor(c,0,d,n,k);}int crypto_stream(u8*c,u64 d,const u8*n,const u8*k){u8 s[32];crypto_core_hsalsa20(s,n,k,sigma);return
crypto_stream_salsa20(c,d,n+16,s);}int crypto_stream_xor(u8*c,const u8*m,u64 d,const u8*n,const u8*k){u8 s[32];crypto_core_hsalsa20(s,n,k,
sigma);return crypto_stream_salsa20_xor(c,m,d,n+16,s);}sv add1305(u32*h,const u32*c){u32 j,u=0;FOR(j,17){u+=h[j]+c[j];h[j]=u&255;u>>=8;}}
static const u32 minusp[17]={5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,252};int crypto_onetimeauth(u8*out,const u8*m,u64 n,const u8*k){u32 s,i,j,u,x[
17],r[17],h[17],c[17],g[17];FOR(j,17)r[j]=h[j]=0;FOR(j,16)r[j]=k[j];r[3]&=15;r[4]&=252;r[7]&=15;r[8]&=252;r[11]&=15;r[12]&=252;r[15]&=15;
while(n>0){FOR(j,17)c[j]=0;for(j=0;(j<16)&&(j<n);++j)c[j]=m[j];c[j]=1;m+=j;n-=j;add1305(h,c);FOR(i,17){x[i]=0;FOR(j,17)x[i]+=h[j]*((j<=i)?r[
i-j]:320*r[i+17-j]);}FOR(i,17)h[i]=x[i];u=0;FOR(j,16){u+=h[j];h[j]=u&255;u>>=8;}u+=h[16];h[16]=u&3;u=5*(u>>2);FOR(j,16){u+=h[j];h[j]=u&255;u
>>=8;}u+=h[16];h[16]=u;}FOR(j,17)g[j]=h[j];add1305(h,minusp);s= -(h[16]>>7);FOR(j,17)h[j]^=s&(g[j]^h[j]);FOR(j,16)c[j]=k[j+16];c[16]=0;
add1305(h,c);FOR(j,16)out[j]=h[j];return 0;}int crypto_onetimeauth_verify(const u8*h,const u8*m,u64 n,const u8*k){u8 x[16];
crypto_onetimeauth(x,m,n,k);return crypto_verify_16(h,x);}int crypto_secretbox(u8*c,const u8*m,u64 d,const u8*n,const u8*k){int i;if(d<32)
return-1;crypto_stream_xor(c,m,d,n,k);crypto_onetimeauth(c+16,c+32,d-32,c);FOR(i,16)c[i]=0;return 0;}int crypto_secretbox_open(u8*m,const u8
*c,u64 d,const u8*n,const u8*k){int i;u8 x[32];if(d<32)return-1;crypto_stream(x,32,n,k);if(crypto_onetimeauth_verify(c+16,c+32,d-32,x)!=0)
return-1;crypto_stream_xor(m,c,d,n,k);FOR(i,32)m[i]=0;return 0;}sv set25519(gf r,const gf a){int i;FOR(i,16)r[i]=a[i];}sv car25519(gf o){int
i;i64 c;FOR(i,16){o[i]+=(1LL<<16);c=o[i]>>16;o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);o[i]-=c<<16;}}sv sel25519(gf p,gf q,int b){i64 t,i,c=~(b-
1);FOR(i,16){t=c&(p[i]^q[i]);p[i]^=t;q[i]^=t;}}sv pack25519(u8*o,const gf n){int i,j,b;gf m,t;FOR(i,16)t[i]=n[i];car25519(t);car25519(t);
car25519(t);FOR(j,2){m[0]=t[0]-0xffed;for(i=1;i<15;i++){m[i]=t[i]-0xffff-((m[i-1]>>16)&1);m[i-1]&=0xffff;}m[15]=t[15]-0x7fff-((m[14]>>16)&1)
;b=(m[15]>>16)&1;m[15]&=0xffff;sel25519(t,m,1-b);}FOR(i,16){o[2*i]=t[i]&0xff;o[2*i+1]=t[i]>>8;}}static int neq25519(const gf a,const gf b){
u8 c[32],d[32];pack25519(c,a);pack25519(d,b);return crypto_verify_32(c,d);}static u8 par25519(const gf a){u8 d[32];pack25519(d,a);return d[0
]&1;}sv unpack25519(gf o,const u8*n){int i;FOR(i,16)o[i]=n[2*i]+((i64)n[2*i+1]<<8);o[15]&=0x7fff;}sv A(gf o,const gf a,const gf b){int i;FOR
(i,16)o[i]=a[i]+b[i];}sv Z(gf o,const gf a,const gf b){int i;FOR(i,16)o[i]=a[i]-b[i];}sv M(gf o,const gf a,const gf b){i64 i,j,t[31];FOR(i,
31)t[i]=0;FOR(i,16)FOR(j,16)t[i+j]+=a[i]*b[j];FOR(i,15)t[i]+=38*t[i+16];FOR(i,16)o[i]=t[i];car25519(o);car25519(o);}sv S(gf o,const gf a){M(
o,a,a);}sv inv25519(gf o,const gf i){gf c;int a;FOR(a,16)c[a]=i[a];for(a=253;a>=0;a--){S(c,c);if(a!=2&&a!=4)M(c,c,i);}FOR(a,16)o[a]=c[a];}sv
pow2523(gf o,const gf i){gf c;int a;FOR(a,16)c[a]=i[a];for(a=250;a>=0;a--){S(c,c);if(a!=1)M(c,c,i);}FOR(a,16)o[a]=c[a];}int
crypto_scalarmult(u8*q,const u8*n,const u8*p){u8 z[32];i64 x[96],r,i;gf a,b,c,d,e,f;FOR(i,31)z[i]=n[i];z[31]=(n[31]&127)|64;z[0]&=248;
unpack25519(x,p);FOR(i,16){b[i]=x[i];d[i]=a[i]=c[i]=0;}a[0]=d[0]=1;for(i=254;i>=0;--i){r=(z[i>>3]>>(i&7))&1;sel25519(a,b,r);sel25519(c,d,r);
A(e,a,c);Z(a,a,c);A(c,b,d);Z(b,b,d);S(d,e);S(f,a);M(a,c,a);M(c,b,e);A(e,a,c);Z(a,a,c);S(b,a);Z(c,d,f);M(a,c,_121665);A(a,a,d);M(c,c,a);M(a,d
,f);M(d,b,x);S(b,e);sel25519(a,b,r);sel25519(c,d,r);}FOR(i,16){x[i+32]=a[i];x[i+48]=c[i];x[i+64]=b[i];x[i+80]=d[i];}inv25519(x+48,x+48);M(x+
32,x+32,x+48);pack25519(q,x+32);return 0;}int crypto_scalarmult_base(u8*q,const u8*n){return crypto_scalarmult(q,n,_9);}int
crypto_box_keypair(u8*y,u8*x){randombytes(x,32);return crypto_scalarmult_base(y,x);}int crypto_box_beforenm(u8*k,const u8*y,const u8*x){u8 s
[32];crypto_scalarmult(s,x,y);return crypto_core_hsalsa20(k,_0,s,sigma);}int crypto_box_afternm(u8*c,const u8*m,u64 d,const u8*n,const u8*k)
{return crypto_secretbox(c,m,d,n,k);}int crypto_box_open_afternm(u8*m,const u8*c,u64 d,const u8*n,const u8*k){return crypto_secretbox_open(m
,c,d,n,k);}int crypto_box(u8*c,const u8*m,u64 d,const u8*n,const u8*y,const u8*x){u8 k[32];crypto_box_beforenm(k,y,x);return
crypto_box_afternm(c,m,d,n,k);}int crypto_box_open(u8*m,const u8*c,u64 d,const u8*n,const u8*y,const u8*x){u8 k[32];crypto_box_beforenm(k,y,
x);return crypto_box_open_afternm(m,c,d,n,k);}static u64 R(u64 x,int c){return(x>>c)|(x<<(64-c));}static u64 Ch(u64 x,u64 y,u64 z){return(x&
y)^(~x&z);}static u64 Maj(u64 x,u64 y,u64 z){return(x&y)^(x&z)^(y&z);}static u64 Sigma0(u64 x){return R(x,28)^R(x,34)^R(x,39);}static u64
Sigma1(u64 x){return R(x,14)^R(x,18)^R(x,41);}static u64 sigma0(u64 x){return R(x,1)^R(x,8)^(x>>7);}static u64 sigma1(u64 x){return R(x,19)^
R(x,61)^(x>>6);}static const u64 K[80]={0x428a2f98d728ae22ULL,0x7137449123ef65cdULL,0xb5c0fbcfec4d3b2fULL,0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL,0x59f111f1b605d019ULL,0x923f82a4af194f9bULL,0xab1c5ed5da6d8118ULL,0xd807aa98a3030242ULL,0x12835b0145706fbeULL,
0x243185be4ee4b28cULL,0x550c7dc3d5ffb4e2ULL,0x72be5d74f27b896fULL,0x80deb1fe3b1696b1ULL,0x9bdc06a725c71235ULL,0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL,0xefbe4786384f25e3ULL,0x0fc19dc68b8cd5b5ULL,0x240ca1cc77ac9c65ULL,0x2de92c6f592b0275ULL,0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL,0x76f988da831153b5ULL,0x983e5152ee66dfabULL,0xa831c66d2db43210ULL,0xb00327c898fb213fULL,0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL,0xd5a79147930aa725ULL,0x06ca6351e003826fULL,0x142929670a0e6e70ULL,0x27b70a8546d22ffcULL,0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL,0x53380d139d95b3dfULL,0x650a73548baf63deULL,0x766a0abb3c77b2a8ULL,0x81c2c92e47edaee6ULL,0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL,0xa81a664bbc423001ULL,0xc24b8b70d0f89791ULL,0xc76c51a30654be30ULL,0xd192e819d6ef5218ULL,0xd69906245565a910ULL,
0xf40e35855771202aULL,0x106aa07032bbd1b8ULL,0x19a4c116b8d2d0c8ULL,0x1e376c085141ab53ULL,0x2748774cdf8eeb99ULL,0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL,0x4ed8aa4ae3418acbULL,0x5b9cca4f7763e373ULL,0x682e6ff3d6b2b8a3ULL,0x748f82ee5defb2fcULL,0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL,0x8cc702081a6439ecULL,0x90befffa23631e28ULL,0xa4506cebde82bde9ULL,0xbef9a3f7b2c67915ULL,0xc67178f2e372532bULL,
0xca273eceea26619cULL,0xd186b8c721c0c207ULL,0xeada7dd6cde0eb1eULL,0xf57d4f7fee6ed178ULL,0x06f067aa72176fbaULL,0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL,0x1b710b35131c471bULL,0x28db77f523047d84ULL,0x32caab7b40c72493ULL,0x3c9ebe0a15c9bebcULL,0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL,0x597f299cfc657e2aULL,0x5fcb6fab3ad6faecULL,0x6c44198c4a475817ULL};int crypto_hashblocks(u8*x,const u8*m,u64 n){u64 z[
8],b[8],a[8],w[16],t;int i,j;FOR(i,8)z[i]=a[i]=dl64(x+8*i);while(n>=128){FOR(i,16)w[i]=dl64(m+8*i);FOR(i,80){FOR(j,8)b[j]=a[j];t=a[7]+Sigma1
(a[4])+Ch(a[4],a[5],a[6])+K[i]+w[i%16];b[7]=t+Sigma0(a[0])+Maj(a[0],a[1],a[2]);b[3]+=t;FOR(j,8)a[(j+1)%8]=b[j];if(i%16==15)FOR(j,16)w[j]+=w[
(j+9)%16]+sigma0(w[(j+1)%16])+sigma1(w[(j+14)%16]);}FOR(i,8){a[i]+=z[i];z[i]=a[i];}m+=128;n-=128;}FOR(i,8)ts64(x+8*i,z[i]);return n;}static
const u8 iv[64]={0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08,0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b,0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b,
0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1,0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1,0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f,0x1f,0x83,0xd9,0xab,
0xfb,0x41,0xbd,0x6b,0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79};int crypto_hash(u8*out,const u8*m,u64 n){u8 h[64],x[256];u64 i,b=n;FOR(i,64)h[i
]=iv[i];crypto_hashblocks(h,m,n);m+=n;n&=127;m-=n;FOR(i,256)x[i]=0;FOR(i,n)x[i]=m[i];x[n]=128;n=256-128*(n<112);x[n-9]=b>>61;ts64(x+n-8,b<<3
);crypto_hashblocks(h,x,n);FOR(i,64)out[i]=h[i];return 0;}sv add(gf p[4],gf q[4]){gf a,b,c,d,t,e,f,g,h;Z(a,p[1],p[0]);Z(t,q[1],q[0]);M(a,a,t
);A(b,p[0],p[1]);A(t,q[0],q[1]);M(b,b,t);M(c,p[3],q[3]);M(c,c,D2);M(d,p[2],q[2]);A(d,d,d);Z(e,b,a);Z(f,d,c);A(g,d,c);A(h,b,a);M(p[0],e,f);M(
p[1],h,g);M(p[2],g,f);M(p[3],e,h);}sv cswap(gf p[4],gf q[4],u8 b){int i;FOR(i,4)sel25519(p[i],q[i],b);}sv pack(u8*r,gf p[4]){gf tx,ty,zi;
inv25519(zi,p[2]);M(tx,p[0],zi);M(ty,p[1],zi);pack25519(r,ty);r[31]^=par25519(tx)<<7;}sv scalarmult(gf p[4],gf q[4],const u8*s){int i;
set25519(p[0],gf0);set25519(p[1],gf1);set25519(p[2],gf1);set25519(p[3],gf0);for(i=255;i>=0;--i){u8 b=(s[i/8]>>(i&7))&1;cswap(p,q,b);add(q,p)
;add(p,p);cswap(p,q,b);}}sv scalarbase(gf p[4],const u8*s){gf q[4];set25519(q[0],X);set25519(q[1],Y);set25519(q[2],gf1);M(q[3],X,Y);
scalarmult(p,q,s);}int crypto_sign_keypair(u8*pk,u8*sk){u8 d[64];gf p[4];int i;randombytes(sk,32);crypto_hash(d,sk,32);d[0]&=248;d[31]&=127;
d[31]|=64;scalarbase(p,d);pack(pk,p);FOR(i,32)sk[32+i]=pk[i];return 0;}static const u64 L[32]={0xed,0xd3,0xf5,0x5c,0x1a,0x63,0x12,0x58,0xd6,
0x9c,0xf7,0xa2,0xde,0xf9,0xde,0x14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x10};sv modL(u8*r,i64 x[64]){i64 carry,i,j;for(i=63;i>=32;--i){carry=0;for
(j=i-32;j<i-12;++j){x[j]+=carry-16*x[i]*L[j-(i-32)];carry=(x[j]+128)>>8;x[j]-=carry<<8;}x[j]+=carry;x[i]=0;}carry=0;FOR(j,32){x[j]+=carry-(x
[31]>>4)*L[j];carry=x[j]>>8;x[j]&=255;}FOR(j,32)x[j]-=carry*L[j];FOR(i,32){x[i+1]+=x[i]>>8;r[i]=x[i]&255;}}sv reduce(u8*r){i64 x[64],i;FOR(i
,64)x[i]=(u64)r[i];FOR(i,64)r[i]=0;modL(r,x);}int crypto_sign(u8*sm,u64*smlen,const u8*m,u64 n,const u8*sk){u8 d[64],h[64],r[64];i64 i,j,x[
64];gf p[4];crypto_hash(d,sk,32);d[0]&=248;d[31]&=127;d[31]|=64;*smlen=n+64;FOR(i,n)sm[64+i]=m[i];FOR(i,32)sm[32+i]=d[32+i];crypto_hash(r,sm
+32,n+32);reduce(r);scalarbase(p,r);pack(sm,p);FOR(i,32)sm[i+32]=sk[i+32];crypto_hash(h,sm,n+64);reduce(h);FOR(i,64)x[i]=0;FOR(i,32)x[i]=(
u64)r[i];FOR(i,32)FOR(j,32)x[i+j]+=h[i]*(u64)d[j];modL(sm+32,x);return 0;}static int unpackneg(gf r[4],const u8 p[32]){gf t,chk,num,den,den2
,den4,den6;set25519(r[2],gf1);unpack25519(r[1],p);S(num,r[1]);M(den,num,D);Z(num,num,r[2]);A(den,r[2],den);S(den2,den);S(den4,den2);M(den6,
den4,den2);M(t,den6,num);M(t,t,den);pow2523(t,t);M(t,t,num);M(t,t,den);M(t,t,den);M(r[0],t,den);S(chk,r[0]);M(chk,chk,den);if(neq25519(chk,
num))M(r[0],r[0],I);S(chk,r[0]);M(chk,chk,den);if(neq25519(chk,num))return-1;if(par25519(r[0])==(p[31]>>7))Z(r[0],gf0,r[0]);M(r[3],r[0],r[1]
);return 0;}int crypto_sign_open(u8*m,u64*mlen,const u8*sm,u64 n,const u8*pk){int i;u8 t[32],h[64];gf p[4],q[4];*mlen= -1;if(n<64)return-1;
if(unpackneg(q,pk))return-1;FOR(i,n)m[i]=sm[i];FOR(i,32)m[i+32]=pk[i];crypto_hash(h,m,n);reduce(h);scalarmult(p,q,h);scalarbase(q,sm+32);add
(p,q);pack(t,p);n-=64;if(crypto_verify_32(sm,t)){FOR(i,n)m[i]=0;return-1;}FOR(i,n)m[i]=sm[i+64];*mlen=n;return 0;}
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B A Python script to convert tweetnacl.c into the 100 tweets

import re
import sys

output = ’’

while True:
line = sys.stdin.readline()
if not line: break
if line[0] == ’#’:

if output:
print output
output = ’’

print line.strip()
else:

x = re.findall(’\w+|\W’,line)
for u in x:

if not u.isspace():
if len(output) + len(u) > 140:

print output
output = ’’

if (re.match(’\w’,output[-1:]) and re.match(’\w’,u[:1])) or (output[-1:] == ’=’ and u[:1] == ’-’):
if len(output) + 1 + len(u) > 140:

print output
output = ’’

else:
output += ’ ’

output += u

print output

C A Python script to print tweetnacl.h

print ’#ifndef TWEETNACL_H’
print ’#define TWEETNACL_H’

for z in [
’auth:hmacsha512256/32/32:BYTES,KEYBYTES:,_verify:qpup,ppup’,
’box:curve25519xsalsa20poly1305/32/32/32/24/32/16:PUBLICKEYBYTES,SECRETKEYBYTES,BEFORENMBYTES,NONCEBYTES,ZEROBYTES,BOXZEROBYTES:’
+ ’,_open,_keypair,_beforenm,_afternm,_open_afternm:qpuppp,qpuppp,qq,qpp,qpupp,qpupp’,
’core:salsa20/64/16/32/16,hsalsa20/32/16/32/16:OUTPUTBYTES,INPUTBYTES,KEYBYTES,CONSTBYTES::qppp’,
’hashblocks:sha512/64/128,sha256/32/64:STATEBYTES,BLOCKBYTES::qpu’,
’hash:sha512/64,sha256/32:BYTES::qpu’,
’onetimeauth:poly1305/16/32:BYTES,KEYBYTES:,_verify:qpup,ppup’,
’scalarmult:curve25519/32/32:BYTES,SCALARBYTES:,_base:qpp,qp’,
’secretbox:xsalsa20poly1305/32/24/32/16:KEYBYTES,NONCEBYTES,ZEROBYTES,BOXZEROBYTES:,_open:qpupp,qpupp’,
’sign:ed25519/64/32/64:BYTES,PUBLICKEYBYTES,SECRETKEYBYTES:,_open,_keypair:qvpup,qvpup,qq’,
’stream:xsalsa20/32/24,salsa20/32/8:KEYBYTES,NONCEBYTES:,_xor:qupp,qpupp’,
’verify:16/16,32/32:BYTES::pp’
]:

x,q,s,f,g = [i.split(’,’) for i in z.split(’:’)]
o = ’crypto_’+x[0]
sel = 1
for p in q:

p = p.split(’/’)
op = o+’_’+p[0]
opi = op+’_’+’tweet’
if sel:

print ’#define ’+o+’_PRIMITIVE "’+p[0]+’"’
for m in f+[’_’+m for m in s+[’IMPLEMENTATION’,’VERSION’]]: print ’#define ’+o+m+’ ’+op+m
sel = 0

for j in range(len(s)): print ’#define ’+opi+’_’+s[j]+’ ’+str(p[j+1])
for j in range(len(f)):

a = g[j].replace(’v’,’u *’).replace(’u’,’,unsigned long long’).replace(’q’,’,unsigned char *’).replace(’p’,’,const unsigned char *’)
print ’extern int ’+opi+f[j]+’(’+a[1:]+’);’

print ’#define ’+opi+’_VERSION "-"’
for m in f+[’_’+m for m in s+[’VERSION’]]: print ’#define ’+op+m+’ ’+opi+m
print ’#define ’+op+’_IMPLEMENTATION "’+o+’/’+p[0]+’/tweet’+’"’

print ’#endif’

D Table of symbols

name type meaning

_0 const u8[16] {0}

_9 const u8[32] {9}

_121665 const gf {0xDB41,1}

A function add 256-bit integers, radix 216

add function add points on Edwards curve
add1305 function add 136-bit integers, radix 28

car25519 function reduce mod 2255 − 19, radix 216

Ch(x,y,z) function ((x & y) ^ (~x & z))
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core function merged crypto_core_salsa20, crypto_core_hsalsa20
cswap function conditionally swap curve points
D const gf Edwards curve parameter
D2 const gf Edwards curve parameter, doubled
dl64 function load 64-bit integer big-endian
FOR(i,n) macro for (i = 0;i < n;++i)

gf typedef i64 [16], representing 256-bit integer in radix 216

gf0 const gf {0}

gf1 const gf {1}

I const gf
√
−1 mod 2255 − 19

i64 typedef signed ≥64-bit integer (long long)
inv25519 function power 2255 − 21 mod 2255 − 19
iv const u8[64] initialization vector for SHA-512
K const u64[80] constants for SHA-512
L const u64[32] prime order of base point
L32 function rotate 32-bit integer left
ld32 function load 32-bit integer little-endian
M function multiply mod 2255 − 19, radix 216

Maj(x,y,z) function ((x & y) ^ (x & z) ^ (y & z))

minusp const u32[17] {5,0,...,0,252}

modL function freeze mod order of base point, radix 28

neq25519 function compare mod 2255 − 19
pack function freeze and store curve point
pack25519 function freeze integer mod 2255 − 19 and store
par25519 function parity of integer mod 2255 − 19
pow2523 function power 2252 − 3 mod 2255 − 19
R function rotate 64-bit integer right
reduce function freeze 512-bit string mod order of base point
S function square mod 2255 − 19, radix 216

scalarbase function scalar multiplication by base point on Edwards curve
scalarmult function scalar multiplication on Edwards curve
sel25519 function 256-bit conditional swap
set25519 function copy 256-bit integer
sigma const u8[16] Salsa20 constant: "expand 32-byte k"

sigma0(x) function (R(x, 1) ^ R(x, 8) ^ (x >> 7))

Sigma0(x) function (R(x,28) ^ R(x,34) ^ R(x,39))

sigma1(x) function (R(x,19) ^ R(x,61) ^ (x >> 6))

Sigma1(x) function (R(x,14) ^ R(x,18) ^ R(x,41))

st32 function store 32-bit integer little-endian
sv macro static void

ts64 function store 64-bit integer big-endian
u8 typedef unsigned 8-bit integer (unsigned char)
u32 typedef unsigned ≥32-bit integer (unsigned long)
u64 typedef unsigned ≥64-bit integer (unsigned long long)
unpack25519 function load integer mod 2255 − 19
unpackneg function load curve point
vn function merged crypto_verify_16, crypto_verify_32
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X const gf x-coordinate of base point
Y const gf y-coordinate of base point
Z function subtract 256-bit integers, radix 216
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