
TweetNaCl: A crypto library in 100 tweets

Daniel J. Bernstein1,2, Bernard van Gastel3, Wesley Janssen3, Tanja Lange2, Peter Schwabe3,
and Sjaak Smetsers3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600MB Eindhoven, the Netherlands

tanja@hyperelliptic.org
3 Radboud University Nijmegen

Digital Security Group
PO Box 9010, 6500GL Nijmegen, The Netherlands
B.vanGastel@cs.ru.nl,w.janssen@student.ru.nl

peter@cryptojedi.org,s.smetsers@science.ru.nl

Abstract. This paper introduces TweetNaCl, a compact reimplementation of the NaCl library,
including all 25 of the NaCl functions used by applications. TweetNaCl is published on Twitter and
fits into just 100 tweets; the tweets are available from anywhere, any time, in an unsuspicious way.
Distribution via other social media, or even printed on a sheet of A4 paper, is also easily possible.

TweetNaCl is human-readable C code; it is the smallest readable implementation of a high-security
cryptographic library. TweetNaCl is the first cryptographic library that allows correct functionality
to be verified by auditors with reasonable effort, making it suitable for inclusion into the trusted
code base of a secure computer system. This paper uses two examples of formally verified correct-
ness properties to illustrate the impact of TweetNaCl’s conciseness upon auditability.

TweetNaCl consists of a single C source file, accompanied by a single header file generated by a
short Python script (1811 bytes). The library can be trivially integrated into a wide range of soft-
ware build processes.

Portability and small code size come at a loss in efficiency, but TweetNaCl is sufficiently fast for
most applications. TweetNaCl’s cryptographic implementations meet the same security and relia-
bility standards as NaCl: for example, complete protection against cache-timing attacks.

Keywords: trusted code base, source-code size, auditability, software implementation, timing-
attack protection, NaCl, Twitter

1 Introduction

OpenSSL is the space shuttle of crypto libraries. It will get you to space, provided
you have a team of people to push the ten thousand buttons required to do so. NaCl
is more like an elevator—you just press a button and it takes you there. No frills
or options.

I like elevators. —Matthew D. Green, 2012 [15]

Cryptographic libraries form the backbone of security applications. The Networking and
Cryptography library (NaCl) [10], see nacl.cr.yp.to, is rapidly becoming the crypto library of
choice for a new generation of applications. NaCl is used, for example, in BitTorrent Live [12];
in DNSCrypt [22] from OpenDNS; in the secure mobile messaging app Threema [24]; and in the
“new (faster and safer) NTor” protocol [14], the new default for Tor [25].

There are several reasons that NaCl has attracted attention. NaCl presents the developer
with a high-level API: for example, all of the work necessary for signing a message is integrated
into NaCl’s crypto_sign function, and all of the work necessary for public-key authenticated

This work was supported by the National Science Foundation under grant 1018836 and by the Netherlands
Organisation for Scientific Research (NWO) under grant 639.073.005 and through Veni 2013 project 13114.
Permanent ID of this document: c74b5bbf605ba02ad8d9e49f04aca9a2. Date: 2014.09.17.

nacl.cr.yp.to

2 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

encryption is integrated into NaCl’s crypto_box function. For each of these functionalities NaCl
provides exactly one default combination of cryptographic primitives selected for high security
and easy protection against timing attacks. For comparison, OpenSSL [23] provides the imple-
mentor with a minefield of options, including many combinations that are broken by timing
attacks and many combinations that provide no security at all.

NaCl is also much faster than OpenSSL. For example, on one core of a 2.5GHz Intel Core
i5-3210M Ivy Bridge CPU, OpenSSL’s RSA-2048 encryption takes 0.13 million cycles but RSA-
2048 decryption takes 4.2 million cycles and elliptic-curve encryption/decryption (DH) takes
0.7 million cycles. NaCl’s elliptic-curve encryption/decryption takes just 0.18 million cycles.
Both NaCl and OpenSSL include optimized assembly-language implementations, but NaCl uses
state-of-the-art primitives that inherently allow higher speed than the primitives included in
OpenSSL: in this case, the Curve25519 elliptic curve rather than the NIST P-256 elliptic curve
or lower-security RSA-2048. This performance gap is not limited to high-end Intel CPUs: see
[11] for a performance analysis of the same primitives on the ARM Cortex-A8 CPU core used
in the iPad 1 and iPhone 4 three years ago and in the low-cost BeagleBone Black today.

However, NaCl’s performance comes at a price. A single NaCl function usually consists of
several different implementations, often including multiple implementations in assembly opti-
mized for different CPUs. NaCl’s compilation system is correspondingly complicated. Auditing
the NaCl source is a time-consuming job. For example, four implementations of the ed25519 sig-
nature system have been publicly available and waiting for integration into NaCl since 2011, but
in total they consist of 5521 lines of C code and 16184 lines of qhasm code. Partial audits have re-
vealed a bug in this software (r1 += 0 + carry should be r2 += 0 + carry in amd64-64-24k)
that would not be caught by random tests; this illustrates the importance of audits. There has
been some progress towards computer verification of formal proofs of correctness of software,
but this progress is still far from complete verification of a usable high-security cryptographic
library.

TweetNaCl: a small reimplementation of NaCl. This paper introduces TweetNaCl (pro-
nounced “tweet salt”), a reimplementation of all 25 C NaCl functions used by applications. Each
TweetNaCl function has exactly the same interface and semantics as the C NaCl function by the
same name. (NaCl also includes an alpha-test networking component and support for languages
other than C; TweetNaCl does not attempt to imitate these features.)

What distinguishes TweetNaCl from NaCl, and from other cryptographic libraries, is Tweet-
NaCl’s conciseness. We have posted TweetNaCl at https://twitter.com/TweetNaCl as a se-
quence of just 100 tweets. The tweets are also shown in Appendix A of this paper. The tweets,
plus 1 byte at the end of each line, occupy a total of 13456 bytes.

What we actually wrote was a slightly less compact 809-line 16637-byte tweetnacl.c. We
then wrote a simple Python script, shown in Appendix B, to remove unnecessary spaces and
produce the tweet form of TweetNaCl shown in Appendix A. Developers using TweetNaCl are
expected to feed the tweet form of TweetNaCl through any standard indentation program, such
as the UNIX indent program, to produce something similar to the original tweetnacl.c.

An accompanying 1811-byte Python script, shown in Appendix C, prints a tweetnacl.h

that declares all the functions in tweetnacl.c, together with the same set of macros provided
by NaCl. NaCl actually splits these declarations and macros into a moderately large collection of
.h files such as crypto_box.h, crypto_box_curve25519xsalsa20poly1305.h, etc.; we have a
similar Python script that creates the same collection of .h files, but switching to tweetnacl.h

is minimal effort for developers.
TweetNaCl is not “obfuscated C”: in indented form it is easily human-readable. It does use

two macros and five typedefs, for example to abbreviate for (i = 0;i < n;++i) as FOR(i,n)
and to abbreviate unsigned char as u8, but we believe that these abbreviations improve read-
ability, and any readers who disagree can easily remove the abbreviations.

TweetNaCl is auditable. TweetNaCl is not merely readable; we claim that it is auditable.
TweetNaCl is short enough and simple enough to be audited against a mathematical description
of the functionality in NaCl such as [2]. TweetNaCl makes it possible to comprehensively audit

https://twitter.com/TweetNaCl

TweetNaCl: A crypto library in 100 tweets 3

the complete cryptographic portion of the trusted code base of a computer system. Of course,
compilers also need to be audited (or to produce proofs of correct translations), as do other
critical system components.

Section 6 explains how we have efficiently verified two memory-safety properties of Tweet-
NaCl. Of course, this is far from a complete audit, but it already illustrates the impact of Tweet-
NaCl’s conciseness upon auditability: verifying the same properties for NaCl would be beyond
current technology, and verifying the same properties for OpenSSL would be inconceivable.

TweetNaCl is secure and reliable. TweetNaCl is a C library containing the same protections
as NaCl against simple timing attacks, cache-timing attacks, etc. It has no branches depending
on secret data, and it has no array indices depending on secret data. We do not want developers
to be faced with a choice between TweetNaCl’s conciseness and NaCl’s security.

TweetNaCl is also thread-safe, and has no dynamic memory allocation. TweetNaCl, like C
NaCl, stores all temporary variables in limited areas of the stack. There are no hidden failure
cases: TweetNaCl reports forgeries in the same way as C NaCl, and is successful in all other
cases.

TweetNaCl’s functions compute the same outputs as C NaCl: the libraries are compatible.
We have checked all TweetNaCl functions against the NaCl test suite.

TweetNaCl is portable and easy to integrate. Another advantage of TweetNaCl’s con-
ciseness is that developers can simply add the files tweetnacl.c and tweetnacl.h into their
applications, without worrying about complicated configuration systems or dependencies upon
external libraries. TweetNaCl works straightforwardly with a broad range of compilation sys-
tems, including cross-compilation systems, and runs on any device that can compile C. We
comment that TweetNaCl also provides another form of portability, namely literal portability,
while maintaining literal readability: TweetNaCl fits onto a single sheet of paper in a legible
font size, see Appendix A.

For comparison, the Sodium library from Denis [13] is a “portable, cross-compilable, instal-
lable, packageable fork of NaCl, with a compatible API”; current libsodium-0.6.0.tar.gz has
1546246 bytes and unpacks into 447 files totaling 5525939 bytes. Many NaCl applications (e.g.,
DNSCrypt), and 26 NaCl bindings for various languages, are actually using Sodium. Tweet-
NaCl is similar to Sodium in being portable, cross-compilable, installable, and packageable; but
TweetNaCl has the added advantage of being so small that it can be trivially incorporated into
applications by inclusion rather than by reference. We have placed TweetNaCl into the public
domain, and we encourage applications to make use of it.

The first version of Sodium was obtained by reducing NaCl to its reference implementations,
removing all of the optimized implementations, and simplifying the build system accordingly.
We emphasize that this does not produce anything as concise as TweetNaCl. Sections 2, 3, 4,
and 5 of this paper describe the techniques we used to reduce the complexity of the TweetNaCl
code, compared to the NaCl reference implementations.

TweetNaCl is fast enough for typical applications. TweetNaCl’s focus on code size means
that TweetNaCl cannot provide optimal run-time performance; NaCl’s optimized assembly is
often an order of magnitude faster. However, TweetNaCl is sufficiently fast for most crypto-
graphic applications. Most applications can tolerate the 4.2 million cycles that OpenSSL uses
on an Ivy Bridge CPU for RSA-2048 decryption, for example, so they can certainly tolerate
the 2.5 million cycles that TweetNaCl uses for higher-security decryption (Curve25519). Note
that, at a typical 2.5GHz CPU speed, this is 1000 decryptions per second per CPU core. One
can of course find examples of busy applications that need the higher performance of NaCl, but
those examples do not affect the usability of TweetNaCl in typical lower-volume cryptographic
applications.

Of course, it would be better for compilers to turn concise source code into optimal object
code, so that there is no need for optimized assembly in the first place. We leave this as a
challenge for language designers and compiler writers.

4 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

TweetNaCl is also small after compilation. TweetNaCl remains reasonably small when
compiled, even though this was not its primary goal. For example, when TweetNaCl is compiled
with gcc -Os on an Intel CPU, it takes only 11512 bytes. Small compiled code has several
benefits: perhaps most importantly, it avoids instruction-cache misses, both for its own startup
and for other code that would otherwise have been kicked out of cache. Note that typical
cryptographic benchmarks ignore these costs.

For some C compilers, putting all of TweetNaCl into a single .c file prevents separate linking:
the final binary will include all TweetNaCl functions even if not all of those functions are used.
Any developers who care about the penalty here could comment out the unused code, but
TweetNaCl is so small that this penalty is negligible in the first place.

On some platforms, code is limited in total size, not just in the amount that can be cached.
This was the motivation for Hutter and Schwabe to reimplement NaCl to fit into the limited
flash storage and RAM available on AVR microcontrollers [18]. Their low-area implementation
consists of several thousand lines written in assembly and compiles to 17366 bytes; they also
have faster implementations using somewhat more area. TweetNaCl compiles to somewhat more
code, 29682 bytes on the same platform, but is much easier to read and to verify, especially since
the verification work for TweetNaCl is shared across platforms.

TweetNaCl is a full library, not just isolated functions. In June 2013, Green [16] an-
nounced a new contest to “identify useful cryptographic algorithms that can be formally de-
scribed in one Tweet.” TweetNaCl is inspired by, but not a submission to, this contest. Unlike
the submissions in that Twitter thread, later submissions using #C1T on Twitter, or TweetCi-
pher [1] (authenticated encryption in 6 tweets, but with an experimental cryptosystem cobbled
together for the sole purpose of being short), TweetNaCl provides exactly NaCl’s high-level
high-security cryptographic operations. TweetNaCl includes all necessary conversions to and
from wire format, modular arithmetic from scratch, etc., using nothing but the C language.

TweetNaCl provides extremely high source-code availability. In 1995, at the height of
the crypto wars, the United States government regarded cryptographic software as arms and
subjected it to severe export control. In response, Zimmermann published the PGP software as
a printed book [28]. The export-control laws did not cover printed material, so the book could
be shipped abroad. Producing usable PGP software from the printed copies (see [27]) required
hours of volunteer work to OCR and proofread over 6000 pages of code.

TweetNaCl fits onto just 1 page. This conciseness opens up many new possibilities for soft-
ware distribution, ensuring the permanent availability of TweetNaCl to users worldwide, even
users living under regimes that have decided to censor our 100 tweets. Of course, PGP is a
full-fledged cryptographic application rather than just a cryptographic library, but we expect
TweetNaCl to enable a broad spectrum of small high-security cryptographic applications.

Functions supported by TweetNaCl. Simple NaCl applications need only six high-level
NaCl functions: crypto_box for public-key authenticated encryption; crypto_box_open for ver-
ification and decryption; crypto_box_keypair to create a public key in the first place; and
similarly for signatures crypto_sign, crypto_sign_open, and crypto_sign_keypair.

A minimalist implementation of the NaCl API would provide just these six functions. Tweet-
NaCl is more ambitious, supporting all 25 of the NaCl functions listed in Table 1, which as
mentioned earlier are all of the C NaCl functions used by applications. This list includes all
of NaCl’s “default” primitives except for crypto_auth_hmacsha512256, which was included in
NaCl only for compatibility with standards and is superseded by crypto_onetimeauth.

As mentioned earlier, the Ed25519 signature system has not yet been integrated into NaCl,
since the Ed25519 software has not yet been fully audited; NaCl currently provides an older
signature system. However, NaCl has announced that it will transition to Ed25519, so TweetNaCl
provides Ed25519.

In surveying NaCl applications we have found two main reasons that applications go beyond
the minimal list of six functions. First, many NaCl applications split (e.g.) crypto_box into
crypto_box_beforenm and crypto_box_afternm to improve speed. Second, some NaCl appli-

TweetNaCl: A crypto library in 100 tweets 5

crypto_box = crypto_box_curve25519xsalsa20poly1305

crypto_box_open

crypto_box_keypair

crypto_box_beforenm

crypto_box_afternm

crypto_box_open_afternm

crypto_core_salsa20

crypto_core_hsalsa20

crypto_hashblocks = crypto_hashblocks_sha512

crypto_hash = crypto_hash_sha512

crypto_onetimeauth = crypto_onetimeauth_poly1305

crypto_onetimeauth_verify

crypto_scalarmult = crypto_scalarmult_curve25519

crypto_scalarmult_base

crypto_secretbox = crypto_secretbox_xsalsa20poly1305

crypto_secretbox_open

crypto_sign = crypto_sign_ed25519

crypto_sign_open

crypto_sign_keypair

crypto_stream = crypto_stream_xsalsa20

crypto_stream_xor

crypto_stream_salsa20

crypto_stream_salsa20_xor

crypto_verify_16

crypto_verify_32

Fig. 1. Functions supported by TweetNaCl.

cations are experimenting with variations of NaCl’s high-level operations but continue to use
lower-level NaCl functions such as crypto_secretbox and crypto_hash.

It is important for all of these applications to continue to work with TweetNaCl. The chal-
lenge here is the code size required to provide many functions. Even a single very simple function
such as

int crypto_box_beforenm(u8 *k,const u8 *y,const u8 *x)
{
u8 s[32];
crypto_scalarmult(s,x,y);
return crypto_core_hsalsa20(k,z,s,sigma);

}

costs us approximately 1 tweet. We could use shorter function names internally, but we would
then need further wrappers to provide all the external function names listed in Table 1. We
have many such functions, and a limited tweet budget, limiting the space available for actual
cryptographic computations.

2 Salsa20, HSalsa20, and XSalsa20

NaCl encrypts messages by xor’ing them with the output of Bernstein’s Salsa20 [5] stream
cipher. The Salsa20 stream cipher generates 64-byte output blocks using the Salsa20 “core
function” in counter mode. The main loop in NaCl’s reference implementation of this core
function, crypto_core/salsa20/ref/core.c, transforms 16 32-bit words x0, x1, . . . , x15 as
follows, where ROUNDS is 20:

for (i = ROUNDS;i > 0;i -= 2) {
x4 ^= rotate(x0+x12, 7); x8 ^= rotate(x4+ x0, 9);
x12 ^= rotate(x8+ x4,13); x0 ^= rotate(x12+ x8,18);
x9 ^= rotate(x5+ x1, 7); x13 ^= rotate(x9+ x5, 9);
x1 ^= rotate(x13+ x9,13); x5 ^= rotate(x1+x13,18);
x14 ^= rotate(x10+ x6, 7); x2 ^= rotate(x14+x10, 9);
x6 ^= rotate(x2+x14,13); x10 ^= rotate(x6+ x2,18);
x3 ^= rotate(x15+x11, 7); x7 ^= rotate(x3+x15, 9);
x11 ^= rotate(x7+ x3,13); x15 ^= rotate(x11+ x7,18);
x1 ^= rotate(x0+ x3, 7); x2 ^= rotate(x1+ x0, 9);

6 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

x3 ^= rotate(x2+ x1,13); x0 ^= rotate(x3+ x2,18);
x6 ^= rotate(x5+ x4, 7); x7 ^= rotate(x6+ x5, 9);
x4 ^= rotate(x7+ x6,13); x5 ^= rotate(x4+ x7,18);
x11 ^= rotate(x10+ x9, 7); x8 ^= rotate(x11+x10, 9);
x9 ^= rotate(x8+x11,13); x10 ^= rotate(x9+ x8,18);
x12 ^= rotate(x15+x14, 7); x13 ^= rotate(x12+x15, 9);
x14 ^= rotate(x13+x12,13); x15 ^= rotate(x14+x13,18);

}

Notice that this loop involves 96 x indices: x4, x0, x12, x8, x4, etc. TweetNaCl handles the
same loop much more concisely:

FOR(i,20) {
FOR(j,4) {

FOR(m,4) t[m] = x[(5*j+4*m)%16];
t[1] ^= rotate(t[0]+t[3], 7); t[2] ^= rotate(t[1]+t[0], 9);
t[3] ^= rotate(t[2]+t[1],13); t[0] ^= rotate(t[3]+t[2],18);
FOR(m,4) w[4*j+(j+m)%4] = t[m];

}
FOR(m,16) x[m] = w[m];

}

We emphasize two levels of Salsa20 symmetry that appear in the Salsa20 specification and
that are expressed explicitly in this TweetNaCl loop. First, the 20 rounds in Salsa20 alternate
between “column rounds” and “row rounds”, with column rounds operating on columns of the
4× 4 matrix

x[0] x[1] x[2] x[3]

x[4] x[5] x[6] x[7]

x[8] x[9] x[10] x[11]

x[12] x[13] x[14] x[15]

and row rounds operating in exactly the same way on rows of the matrix. TweetNaCl computes
a row round as a transposition of the matrix followed by a column round followed by another
transposition; i.e., the 20 rounds consist of 20 iterations of “compute a column round and
transpose the output”. The transposed result of each round is built in a separate array w to
avoid overwriting the round input; it is then copied from w back to x. One can easily see that
the indices 4*j+(j+m)%4 for w are the transposes of the indices (5*j+4*m)%16 for x.

Second, the column round operates on the column down from x[0], operates in the same
way on the column down from x[5] (wrapping around to x[1]), operates in the same way on
the column down from x[10], and operates in the same way on the column down from x[15].
TweetNaCl has j loop over the 4 columns; the x index (5*j+4*m)%16 is m columns down from
the starting point in column j.

For comparison, the indices in the second half of the NaCl loop shown above are the trans-
poses of the indices in the first half, and the indices in the first half have these symmetries across
columns. Verifying these 96 indices is of course feasible but takes considerably more time than
verifying the corresponding segment of TweetNaCl code—and this is just the first of many ways
in which NaCl’s reference implementations consume more code than TweetNaCl.

Stream generation and stream encryption. NaCl actually has two ways to use Salsa20:
crypto_stream_salsa20 produces any desired number of bytes of the Salsa20 output stream;
crypto_stream_salsa20_xor produces a ciphertext from a plaintext. Both functions are wrap-
pers around crypto_core_salsa20; both functions handle initialization and updates of the block
counter, and output lengths that are not necessarily multiples of 64. The difference is that the
second function xors each block with a plaintext block, moving along the plaintext accordingly.

TweetNaCl’s crypto_stream_salsa20 implementation calls crypto_stream_salsa20_xor

with a null pointer for the plaintext. This eliminates essentially all the duplication of code be-
tween these two functions, at the expense of three small tweaks to crypto_stream_salsa20_xor,
such as replacing

FOR(i,64) c[i] = m[i] ^ x[i];

with

TweetNaCl: A crypto library in 100 tweets 7

FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];

to treat a null pointer m as if it were a pointer to an all-0 block.

XSalsa20 and HSalsa20. NaCl’s crypto_stream actually uses Bernstein’s XSalsa20 stream
cipher (see [6]) rather than the Salsa20 stream cipher. The difference is that XSalsa20 supports
32 bytes of nonce/counter input while Salsa20 supports only 16 bytes of nonce/counter input.
XSalsa20 uses the original 32-byte key and the first 16 bytes of the nonce to generate an in-
termediate 32-byte key, and then uses Salsa20 with the intermediate key and the remaining 16
bytes of nonce/counter to generate each output block.

The intermediate key generation, called “HSalsa20”, is similar to Salsa20 but slightly more
efficient, and has a separate implementation in NaCl. For our purposes this is a problem: it
means almost doubling the code size.

TweetNaCl does better by viewing HSalsa20 as (1) generating a 64-byte Salsa20 output
block, (2) extracting 32 bytes from particular output positions, and then (3) transforming
those 32 bytes in a public invertible way. The transformation is much more concise than a
separate HSalsa20 implementation, allowing us to implement both crypto_core_salsa20 and
crypto_core_hsalsa20 as wrappers around a unified core function in TweetNaCl.

We do not claim novelty for this view of HSalsa20: the same structure is exactly what allowed
the proof in [6] that the security of Salsa20 implies the security of HSalsa20 and XSalsa20. What
is new is the use of this structure to simplify a unified Salsa20/HSalsa20 implementation.

3 Poly1305

Secret-key authentication in NaCl uses Bernstein’s Poly1305 [3] authenticator. The Poly1305
code in the NaCl reference implementation is already quite concise. For elements of F2130−5 it
uses a radix-28 representation; we use the same representation for TweetNaCl.

The NaCl reference implementation uses a mulmod function for multiplication in F2130−5,
a squeeze function to perform two carry chains after multiplication and a freeze function
to produce a unique representation of an element of F2130−5. Each of these functions is called
only once in the Poly1305 main loop; we inline those functions to remove code for the function
header and the call. The reference implementation also uses an add function which is called once
in the main loop, once during finalization and once inside the freeze function. We keep the
function, but rename it to add1305 to avoid confusion with the add function used (as described
in Section 5) for elliptic-curve addition.

We furthermore shorten the code of modular multiplication. NaCl’s reference implementation
performs multiplication of h by r with the result in hr as follows:

for (i = 0;i < 17;++i) {
u = 0;
for (j = 0;j <= i;++j)

u += h[j] * r[i - j];
for (j = i + 1;j < 17;++j)

u += 320 * h[j] * r[i + 17 - j];
hr[i] = u;

}

This piece of code exploits the fact that 2136 ≡ 320 (mod 2130− 5) for modular reduction on
the fly. TweetNaCl merges the two inner loops:

FOR (i, 17) {
x[i] = 0;
FOR (j, 17)

x[i] += h[j] * ((j <= i) ? r[i - j] : 320 * r[i + 17 - j]);
}

4 SHA-512

The default hash function in NaCl and the hash function used within the Ed25519 signature
scheme (see Section 5) is SHA-512 [26]. The SHA-512 code in the NaCl reference implementation
consists of two main portions of code:

8 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

– The function crypto hash, which performs initialization of the hash value with the IV and
computation of message padding; and

– the crypto hashblocks function which performs hashing of full blocks.

Message padding. Outside of crypto_hashblocks, message padding is the most complex
part of crypto_hash. The reference padding code, with TweetNaCl’s choices of variable names
substituted for the original choices, is as follows:

for (i = 0;i < n;++i) x[i] = m[i];
x[n] = 0x80;
if (n < 112) {
for (i = n + 1;i < 119;++i) x[i] = 0;
x[119] = b >> 61;
x[120] = b >> 53; x[121] = b >> 45;
x[122] = b >> 37; x[123] = b >> 29;
x[124] = b >> 21; x[125] = b >> 13;
x[126] = b >> 5; x[127] = b << 3;
crypto_hashblocks(h,x,128);

} else {
for (i = n + 1;i < 247;++i) x[i] = 0;
x[247] = b >> 61;
x[248] = b >> 53; x[249] = b >> 45;
x[250] = b >> 37; x[251] = b >> 29;
x[252] = b >> 21; x[253] = b >> 13;
x[254] = b >> 5; x[255] = b << 3;
crypto_hashblocks(h,x,256);

}

This segment handles two possibilities for processing the final partial block of SHA-512 input:
if the block has fewer than 112 bytes then it is padded to 128 bytes; otherwise it is padded to
256 bytes. The padding ends with a 9-byte big-endian encoding of the number of message bits.

TweetNaCl simplifies this code in three ways. First, it eliminates the two separate lines of
zero-padding x in favor of initializing the whole array to 0. Second, elsewhere in TweetNaCl
there is a ts64 function (used at the end of the SHA-512 compression function) that stores 64
bits in big-endian form; TweetNaCl reuses this function inside the padding. Third, TweetNaCl
merges the two branches, reusing n (which has no later use) for the number of bytes in the
padded block. The final padding code is much more concise than the original:

FOR(i,256) x[i] = 0;
FOR(i,n) x[i] = m[i];
x[n] = 128;
n = 256-128*(n<112);
x[n-9] = b >> 61;
ts64(x+n-8,b << 3);
crypto_hashblocks(h,x,n);

Hashing blocks. SHA-512 performs 80 rounds of computation per block. The NaCl reference
implementation has 80 lines for these 80 rounds. Each round is just one invocation of an F macro
(interruped by invocations of an EXPAND macro after every 16 rounds), but this still results in
a significant amount of code. TweetNaCl instead uses a loop over the 80 rounds. With such a
“rolled” loop there is only one invocation of each of the macros, so TweetNaCl inlines those.

In NaCl the 16 64-bit message words are loaded into variables w0, w1, . . . , w15; the internal
temporary state is kept in variables a, b, . . . , h. TweetNaCl uses arrays u64 w[16] and u64

a[8] instead. This allows us to also roll all initialization and copy loops. The final code for
processing one 128-byte block is the following:

FOR(i,16) w[i] = dl64(m + 8 * i);

FOR(i,80) {
FOR(j,8) b[j] = a[j];
t = a[7] + Sigma1(a[4]) + Ch(a[4],a[5],a[6]) + K[i] + w[i%16];
b[7] = t + Sigma0(a[0]) + Maj(a[0],a[1],a[2]);
b[3] += t;
FOR(j,8) a[(j+1)%8] = b[j];
if (i%16 == 15)

FOR(j,16)
w[j] += w[(j+9)%16] + sigma0(w[(j+1)%16]) + sigma1(w[(j+14)%16]);

TweetNaCl: A crypto library in 100 tweets 9

}

FOR(i,8) { a[i] += z[i]; z[i] = a[i]; }

Obviously there is still some complexity in this code, but this directly reflects the inherent
complexity of the SHA-512 function; the SHA-512 specification [26] is easily verified to match
TweetNaCl’s implementation. The functions Sigma1, Ch, Sigma0, Maj, sigma0, and sigma1 are
one-line implementations of the functions Σ1, Ch, Σ0, Maj, σ0, and σ1 from the SHA-512
specification.

5 Curve25519 and Ed25519

Asymmetric cryptography in NaCl uses Bernstein’s Curve25519 elliptic-curve Diffie-Hellman
key exchange [4] and will use the Ed25519 elliptic-curve signature scheme from Bernstein, Duif,
Lange, Schwabe, and Yang [7,8]. This section explains the techniques we use for our compact
implementation of these two schemes.

Arithmetic in F2255−19. Both Curve25519 and Ed25519 require arithmetic in the field F2255−19.
We represent an element of this finite field as an array of 16 signed 64-bit integers (datatype
signed long long) in radix 216:

typedef i64 gf[16];

Additions and subtractions do not have to worry about carries or modular reduction; they simply
turn into a loop that performs 16 coefficient additions or subtractions.

Multiplication performs simple “operand scanning” schoolbook multiplication in two nested
loops. We then reduce modulo 2256 − 38:

i64 i,j,t[31];
FOR(i,31) t[i]=0;
FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
FOR(i,15) t[i]+=38*t[i+16];
FOR(i,16) o[i]=t[i];

The 16 result coefficients in o are too large to be used as input to another multiplication. We
use two calls to a car25519 carry function to solve this problem. This carry function modifies
the result o in place as follows:

FOR(i,16) {
o[i] += (1LL<<16);
c = o[i]>>16;
o[(i+1)*(i<15)] += c-1+37*(c-1)*(i==15);
o[i] -= c<<16;

}

Aside from carrying from one limb to the next, the function also adds 216 to each limb and
subtracts 1 from the next highest limb before performing the carry. This ensures that repeated
application of the function brings all limbs into the interval [0, 216 − 1]. Without this addition,
repeated application of the carry chain would bring all limbs into the interval [−216−1, 216−1].
We use this additional functionality to “freeze” field elements to a unique representation at the
very end of the Curve25519 or Ed25519 computations.

We reuse the multiplication for squarings, but make squarings explicit by spending a few
bytes of source code for a separate function that simply calls multiplication. This makes it easy
during code audit to compare the code to elliptic-curve addition formulas, for example from
the Explicit Formulas Database [9]. To match the notation of [9] we use the names M and S for
functions that multiply and square in the field F2255−19; we also use A for addition and Z for
subtraction.

Inversion uses Fermat’s little theorem and is implemented through exponentation with 2255−
21. We use a simple square-and-multiply algorithm and avoid storing the exponent by making
use of its special shape: it has all bits set but the bits at position 4 and position 2. We perform
the square-and-multiply loop for inversion as follows:

10 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

for(a=253;a>=0;a--) {
S(c,c);
if(a!=2&&a!=4) M(c,c,i);

}

The square-root computation for point decompression in Ed25519 uses exponentiation by
2252− 3. See [7, Section 5]. Observe that this exponent has all bits set but the bit at position 1;
we use the same approach as for inversion.

Curve arithmetic. The typical Curve25519 implementation computes a Montgomery lad-
der [20] on the Montgomery curve M : y2 = x3 + 486662x2 + x. The Ed25519 signature scheme
performs arithmetic on the birationally equivalent twisted Edwards curve E : −x2 + y2 =
1− 121665

121666x
2y2. More specifically, Ed25519 key generation and signing perform a fixed-basepoint

scalar multiplication; verification performs a double-scalar multiplication.

In principle, TweetNaCl could use the same scalar-multiplication code for both Curve25519
and Ed25519. This would require conversion of points on M to points on E and back. If we used
the x-coordinate-based differential addition ladder of Curve25519 also for Ed25519, we would
additionally need code to recover the y-coordinate as described by Okeya and Sakurai in [21].
Conversion code is not substantially shorter than the code required for the Curve25519 Mont-
gomery ladder, so we decided to not use the same code for scalar multiplication in Curve25519
and Ed25519.

Curve25519 uses the same Montgomery ladder as the reference implementation, except that
we do not use a dedicated function for multiplication by the constant 121666. For Ed25519
we decided to use only one scalar-multiplication routine that can be used in key generation,
signing, and verification. We represent points on E in extended coordinates as described in [17]
and implement the complete addition law in an add function. We use this function for both
addition and doubling of points. The scalar multiplication then performs a ladder of 256 steps;
each step performs an addition and a doubling:

set25519(p[0],gf0);
set25519(p[1],gf1);
set25519(p[2],gf1);
set25519(p[3],gf0);
for (i = 255;i >= 0;--i) {
u8 b = (s[i/8]>>(i&7))&1;
cswap(p,q,b);
add(q,p);
add(p,p);
cswap(p,q,b);

}

The first four lines set the point p to the neutral element. The cswap function performs a
constant-time conditional swap of p and q depending on the scalar bit that has been extracted
into b before. The constant-time swap calls sel25519 for each of the 4 coordinates of p and q.
The function sel25519 is reused in conditional swaps for the Montgomery ladder in Curve25519
and performs a constant-time conditional swap of field elements as follows:

sv sel25519(gf p,gf q,int b) {
i64 t,i,c=~(b-1);
FOR(i,16) {

t = c & (p[i]^q[i]);
p[i] ^= t;
q[i] ^= t;

}
}

Arithmetic modulo the group order. Signing requires reduction of a 512-bit integer modulo
the order of the Curve25519 group, a prime p = 2252+δ where δ ≈ 2124.38. We store this integer as
a sequence of limbs in radix 28. We eliminate the top limb of the integer, say 2504b, by subtracting
2504b and also subtracting 2252δb; we then perform a partial carry so that 20 consecutive limbs
are each between −27 and 27. We repeat this procedure to eliminate subsequent limbs from the
top. This is considerably more concise than typical reduction methods:

TweetNaCl: A crypto library in 100 tweets 11

for (i = 63;i >= 32;--i) {
carry = 0;
for (j = i - 32;j < i - 12;++j) {

x[j] += carry - 16 * x[i] * L[j - (i - 32)];
carry = (x[j] + 128) >> 8;
x[j] -= carry << 8;

}
x[j] += carry;
x[i] = 0;

}

We similarly eliminate any remaining multiple of 2252, leaving an integer between −1.1 · 2251
and 1.1 · 2251. We then multiply the final carry bit by p and add, obtaining an integer between
0 and p− 1, and carry in the traditional way so that each limb is between 0 and 255.

6 Auditability: two case studies

This section explains how we verified two memory-safety properties of TweetNaCl: first, all
of TweetNaCl’s array accesses are within bounds for all inputs whose lengths meet certain
requirements; second, TweetNaCl makes no use of uninitialized data. Most of this verification
was formal (i.e., comprehensively checked by the computer), except for small parts that were
carried out by hand.

Our basic bounds-checking strategy is as follows. Recall that TweetNaCl, like NaCl, protects
against cache-timing attacks by avoiding all data flow from input contents to pointers. Langley’s
ctgrind tool [19] is adequate to verify this property. Consequently all pointers are determined
by input lengths. Systematically monitoring all pointers for a single input of each length, for
example with valgrind, is thus equivalent to monitoring all pointers for arbitrary inputs of
those lengths. (Of course, this is not the same as arbitary inputs of arbitrary lengths. However,
our main target is applications that cryptographically protect every packet. These applications
normally impose packet-length limits, such as the 16384-byte limit imposed by TLS.)

We decided to use C++ overloading instead of valgrind, so that we would have a framework
for formally verifying further TweetNaCl properties beyond valgrind’s capabilities. There are
some C language features for which C++ broke compatibility with C, but TweetNaCl does not
use any of those features. We had to change some variable definitions and parameter definitions,
but because TweetNaCl is so concise this was easy to do by hand. TweetNaCl’s declaration
structure is highly regular, so scripting this translation would also be straightforward without
any compiler patches.

Specifically, we changed array definitions and pointer-parameter definitions such as

int crypto_stream(u8 *c,u64 d,const u8 *n,const u8 *k)
{
u8 s[32];
...

}

to

int crypto_stream(a<u8> c,u64 d,const a<u8> n,const a<u8> k)
{
da<u8,32> s;
...

}

where a and da are defined as follows:

template <typename Primitive>
struct a {
Primitive *content;
int size;
mutable int index;

a(Primitive *content, int size, int index) : content(content), size(size), index(index) {
assert(index <= size);

}

12 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

Primitive& operator[](int i) {
assert((index+i) >= 0 && (index+i) < size);
return content[index+i];

}
}

template <typename Primitive, int Size>
struct da {
mutable Primitive content[Size];

operator const a<Primitive>() const {
return a<Primitive>(&content[0], Size, 0);

}
}

This is only an illustrative excerpt from the complete definitions of a and da. The complete
definitions use two methods (one for mutables, one for constants) for each pointer operation
used in TweetNaCl. We note that

a operator+(int i) {
assert((index+i) < size);
return {content, size, index+i};

}

would have been too restrictive: there is no problem in C with using a pointer just past the end
of an array as long as the pointer is not dereferenced.

We used overloading in a similar way to check for uninitialized array elements. We created an
auxiliary structure with a flag for each array element stating whether the element was initialized;
initialized each flag to false; set each flag to true upon write; and checked upon read whether
the flag was true.

We close by emphasizing that TweetNaCl’s simplicity was essential for this verification. We
do not claim to have completed an audit of TweetNaCl, but we do claim that a complete audit
will be feasible, and that TweetNaCl is the first cryptographic library for which this is true.

References

1. Jean-Philippe Aumasson. Tweetcipher! (crypto challenge), 2013. http://cybermashup.com/2013/06/12/

tweetcipher-crypto-challenge/ (accessed 2014-09-06). 4
2. Daniel J. Bernstein. Cryptography in NaCl. http://cr.yp.to/highspeed/naclcrypto-20090310.pdf (ac-

cessed 2014-09-06). 2
3. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri Gilbert and Helena Hand-

schuh, editors, Fast Software Encryption, volume 3557 of LNCS, pages 32–49. Springer, 2005. http:

//cr.yp.to/papers.html#poly1305. 7
4. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Moti Yung, Yevgeniy Dodis, Aggelos

Kiayias, and Tal Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958 of LNCS, pages 207–228.
Springer, 2006. http://cr.yp.to/papers.html#curve25519. 9

5. Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew Robshaw and Olivier Billet, editors,
New stream cipher designs, volume 4986 of LNCS, pages 84–97. Springer, 2008. http://cr.yp.to/papers.

html#salsafamily. 5
6. Daniel J. Bernstein. Extending the Salsa20 nonce. In Workshop record of Symmetric Key Encryption Work-

shop 2011, 2011. http://cr.yp.to/papers.html#xsalsa. 7
7. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security

signatures. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems –
CHES 2011, volume 6917 of LNCS, pages 124–142. Springer, 2011. see also full version [8]. 9, 10, 12

8. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security sig-
natures. Journal of Cryptographic Engineering, 2(2):77–89, 2012. http://cryptojedi.org/papers/#ed25519,
see also short version [7]. 9, 12

9. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. http://www.hyperelliptic.org/EFD/

(accessed 2014-09-06). 9
10. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryptographic library.

In Alejandro Hevia and Gregory Neven, editors, Progress in Cryptology – LATINCRYPT 2012, volume 7533
of LNCS, pages 159–176. Springer, 2012. http://cryptojedi.org/papers/#coolnacl. 1

11. Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems – CHES 2012, volume 7428 of LNCS, pages 320–339. Springer,
2012. http://cryptojedi.org/papers/#neoncrypto. 2

12. BitTorrent Live. http://live.bittorrent.com/ (accessed 2014-09-06). 1

http://cybermashup.com/2013/06/12/tweetcipher-crypto-challenge/
http://cybermashup.com/2013/06/12/tweetcipher-crypto-challenge/
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#xsalsa
http://cryptojedi.org/papers/#ed25519
http://www.hyperelliptic.org/EFD/
http://cryptojedi.org/papers/#coolnacl
http://cryptojedi.org/papers/#neoncrypto
http://live.bittorrent.com/

TweetNaCl: A crypto library in 100 tweets 13

13. Frank Denis. Introducing Sodium, a new cryptographic library, 2013. http://labs.opendns.com/2013/03/

06/announcing-sodium-a-new-cryptographic-library/(accessed 2014-09-06). 3
14. Roger Dingledine. Tor 0.2.4.17-rc is out. Posting in [tor-talk], 2013. https://lists.torproject.org/

pipermail/tor-talk/2013-September/029857.html. 1
15. Matthew Green. The anatomy of a bad idea, 2012. http://blog.cryptographyengineering.com/2012/12/

the-anatomy-of-bad-idea.html (accessed 2014-09-06). 1
16. Matthew Green. Announcing a contest: identify useful cryptographic algorithms that can be formally de-

scribed in one Tweet, 2013. https://twitter.com/matthew_d_green/status/342755869110464512 (accessed
2014-09-06). 4

17. Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards curves revisited. In
Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008, volume 5350 of LNCS, pages 326–343.
Springer, 2008. http://eprint.iacr.org/2008/522/. 10

18. Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR Microcontrollers. In Amr Youssef and Abderrah-
mane Nitaj, editors, Progress in Cryptology – AFRICACRYPT 2013, volume 7918 of LNCS, pages 156–172.
Springer, 2013. http://cryptojedi.org/papers/#avrnacl. 4

19. Adam Langley. ctgrind—checking that functions are constant time with Valgrind, 2010. https://github.

com/agl/ctgrind. 11
20. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math-

ematics of Computation, 48(177):243–264, 1987. http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf. 10
21. Katsuyuki Okeya and Kouichi Sakurai. Efficient elliptic curve cryptosystems from a scalar multiplication

algorithm with recovery of the y-coordinate on a Montgomery-form elliptic curve. In Çetin K. Koç, David
Naccache, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume
2162 of LNCS, pages 126–141. Springer, 2001. 10

22. Introducing DNSCrypt (preview release). http://www.opendns.com/technology/dnscrypt/ (accessed 2014-
09-06). 1

23. OpenSSL. OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.org/ (accessed 2014-09-06).
2

24. Threema – seriously secure mobile messaging. https://threema.ch/en/ (accessed 2014-09-06). 1
25. Tor project: Anonymity online. https://www.torproject.org/ (accessed 2014-09-06). 1
26. U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology. Secure Hash Stan-

dard (SHS), 2012. Federal Information Processing Standards Publication 180-4, http://csrc.nist.gov/

publications/fips/fips180-4/fips-180-4.pdf. 7, 9
27. St̊ale Schumacher Ytteborg. The PGPi scanning project. http://www.pgpi.org/pgpi/project/scanning/

(accessed 2014-09-06). 4
28. Philip Zimmermann. PGP Source Code and Internals. MIT Press, 1995. 4

http://labs.opendns.com/2013/03/06/announcing-sodium-a-new-cryptographic-library/
http://labs.opendns.com/2013/03/06/announcing-sodium-a-new-cryptographic-library/
https://lists.torproject.org/pipermail/tor-talk/2013-September/029857.html
https://lists.torproject.org/pipermail/tor-talk/2013-September/029857.html
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
http://blog.cryptographyengineering.com/2012/12/the-anatomy-of-bad-idea.html
https://twitter.com/matthew_d_green/status/342755869110464512
http://eprint.iacr.org/2008/522/
http://cryptojedi.org/papers/#avrnacl
https://github.com/agl/ctgrind
https://github.com/agl/ctgrind
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.opendns.com/technology/dnscrypt/
http://www.openssl.org/
https://threema.ch/en/
https://www.torproject.org/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.pgpi.org/pgpi/project/scanning/

14 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

A The 100 tweets

#include "tweetnacl.h"
#define FOR(i,n) for (i = 0;i < n;++i)
#define sv static void
typedef unsigned char u8;typedef unsigned long u32;typedef unsigned long long u64;typedef long long i64;typedef i64 gf[16];extern void
randombytes(u8*,u64);static const u8 _0[16],_9[32]={9};static const gf gf0,gf1={1},_121665={0xDB41,1},D={0x78a3,0x1359,0x4dca,0x75eb,0xd8ab,
0x4141,0x0a4d,0x0070,0xe898,0x7779,0x4079,0x8cc7,0xfe73,0x2b6f,0x6cee,0x5203},D2={0xf159,0x26b2,0x9b94,0xebd6,0xb156,0x8283,0x149a,0x00e0,
0xd130,0xeef3,0x80f2,0x198e,0xfce7,0x56df,0xd9dc,0x2406},X={0xd51a,0x8f25,0x2d60,0xc956,0xa7b2,0x9525,0xc760,0x692c,0xdc5c,0xfdd6,0xe231,
0xc0a4,0x53fe,0xcd6e,0x36d3,0x2169},Y={0x6658,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,0x6666,
0x6666,0x6666},I={0xa0b0,0x4a0e,0x1b27,0xc4ee,0xe478,0xad2f,0x1806,0x2f43,0xd7a7,0x3dfb,0x0099,0x2b4d,0xdf0b,0x4fc1,0x2480,0x2b83};static
u32 L32(u32 x,int c){return(x<<c)|((x&0xffffffff)>>(32-c));}static u32 ld32(const u8*x){u32 u=x[3];u=(u<<8)|x[2];u=(u<<8)|x[1];return(u<<8)|
x[0];}static u64 dl64(const u8*x){u64 i,u=0;FOR(i,8)u=(u<<8)|x[i];return u;}sv st32(u8*x,u32 u){int i;FOR(i,4){x[i]=u;u>>=8;}}sv ts64(u8*x,
u64 u){int i;for(i=7;i>=0;--i){x[i]=u;u>>=8;}}static int vn(const u8*x,const u8*y,int n){u32 i,d=0;FOR(i,n)d|=x[i]^y[i];return(1&((d-1)>>8))
-1;}int crypto_verify_16(const u8*x,const u8*y){return vn(x,y,16);}int crypto_verify_32(const u8*x,const u8*y){return vn(x,y,32);}sv core(u8
*out,const u8*in,const u8*k,const u8*c,int h){u32 w[16],x[16],y[16],t[4];int i,j,m;FOR(i,4){x[5*i]=ld32(c+4*i);x[1+i]=ld32(k+4*i);x[6+i]=
ld32(in+4*i);x[11+i]=ld32(k+16+4*i);}FOR(i,16)y[i]=x[i];FOR(i,20){FOR(j,4){FOR(m,4)t[m]=x[(5*j+4*m)%16];t[1]^=L32(t[0]+t[3],7);t[2]^=L32(t[1
]+t[0],9);t[3]^=L32(t[2]+t[1],13);t[0]^=L32(t[3]+t[2],18);FOR(m,4)w[4*j+(j+m)%4]=t[m];}FOR(m,16)x[m]=w[m];}if(h){FOR(i,16)x[i]+=y[i];FOR(i,4
){x[5*i]-=ld32(c+4*i);x[6+i]-=ld32(in+4*i);}FOR(i,4){st32(out+4*i,x[5*i]);st32(out+16+4*i,x[6+i]);}}else FOR(i,16)st32(out+4*i,x[i]+y[i]);}
int crypto_core_salsa20(u8*out,const u8*in,const u8*k,const u8*c){core(out,in,k,c,0);return 0;}int crypto_core_hsalsa20(u8*out,const u8*in,
const u8*k,const u8*c){core(out,in,k,c,1);return 0;}static const u8 sigma[16]="expand 32-byte k";int crypto_stream_salsa20_xor(u8*c,const u8
*m,u64 b,const u8*n,const u8*k){u8 z[16],x[64];u32 u,i;if(!b)return 0;FOR(i,16)z[i]=0;FOR(i,8)z[i]=n[i];while(b>=64){crypto_core_salsa20(x,z
,k,sigma);FOR(i,64)c[i]=(m?m[i]:0)^x[i];u=1;for(i=8;i<16;++i){u+=(u32)z[i];z[i]=u;u>>=8;}b-=64;c+=64;if(m)m+=64;}if(b){crypto_core_salsa20(x
,z,k,sigma);FOR(i,b)c[i]=(m?m[i]:0)^x[i];}return 0;}int crypto_stream_salsa20(u8*c,u64 d,const u8*n,const u8*k){return
crypto_stream_salsa20_xor(c,0,d,n,k);}int crypto_stream(u8*c,u64 d,const u8*n,const u8*k){u8 s[32];crypto_core_hsalsa20(s,n,k,sigma);return
crypto_stream_salsa20(c,d,n+16,s);}int crypto_stream_xor(u8*c,const u8*m,u64 d,const u8*n,const u8*k){u8 s[32];crypto_core_hsalsa20(s,n,k,
sigma);return crypto_stream_salsa20_xor(c,m,d,n+16,s);}sv add1305(u32*h,const u32*c){u32 j,u=0;FOR(j,17){u+=h[j]+c[j];h[j]=u&255;u>>=8;}}
static const u32 minusp[17]={5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,252};int crypto_onetimeauth(u8*out,const u8*m,u64 n,const u8*k){u32 s,i,j,u,x[
17],r[17],h[17],c[17],g[17];FOR(j,17)r[j]=h[j]=0;FOR(j,16)r[j]=k[j];r[3]&=15;r[4]&=252;r[7]&=15;r[8]&=252;r[11]&=15;r[12]&=252;r[15]&=15;
while(n>0){FOR(j,17)c[j]=0;for(j=0;(j<16)&&(j<n);++j)c[j]=m[j];c[j]=1;m+=j;n-=j;add1305(h,c);FOR(i,17){x[i]=0;FOR(j,17)x[i]+=h[j]*((j<=i)?r[
i-j]:320*r[i+17-j]);}FOR(i,17)h[i]=x[i];u=0;FOR(j,16){u+=h[j];h[j]=u&255;u>>=8;}u+=h[16];h[16]=u&3;u=5*(u>>2);FOR(j,16){u+=h[j];h[j]=u&255;u
>>=8;}u+=h[16];h[16]=u;}FOR(j,17)g[j]=h[j];add1305(h,minusp);s= -(h[16]>>7);FOR(j,17)h[j]^=s&(g[j]^h[j]);FOR(j,16)c[j]=k[j+16];c[16]=0;
add1305(h,c);FOR(j,16)out[j]=h[j];return 0;}int crypto_onetimeauth_verify(const u8*h,const u8*m,u64 n,const u8*k){u8 x[16];
crypto_onetimeauth(x,m,n,k);return crypto_verify_16(h,x);}int crypto_secretbox(u8*c,const u8*m,u64 d,const u8*n,const u8*k){int i;if(d<32)
return-1;crypto_stream_xor(c,m,d,n,k);crypto_onetimeauth(c+16,c+32,d-32,c);FOR(i,16)c[i]=0;return 0;}int crypto_secretbox_open(u8*m,const u8
*c,u64 d,const u8*n,const u8*k){int i;u8 x[32];if(d<32)return-1;crypto_stream(x,32,n,k);if(crypto_onetimeauth_verify(c+16,c+32,d-32,x)!=0)
return-1;crypto_stream_xor(m,c,d,n,k);FOR(i,32)m[i]=0;return 0;}sv set25519(gf r,const gf a){int i;FOR(i,16)r[i]=a[i];}sv car25519(gf o){int
i;i64 c;FOR(i,16){o[i]+=(1LL<<16);c=o[i]>>16;o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);o[i]-=c<<16;}}sv sel25519(gf p,gf q,int b){i64 t,i,c=~(b-
1);FOR(i,16){t=c&(p[i]^q[i]);p[i]^=t;q[i]^=t;}}sv pack25519(u8*o,const gf n){int i,j,b;gf m,t;FOR(i,16)t[i]=n[i];car25519(t);car25519(t);
car25519(t);FOR(j,2){m[0]=t[0]-0xffed;for(i=1;i<15;i++){m[i]=t[i]-0xffff-((m[i-1]>>16)&1);m[i-1]&=0xffff;}m[15]=t[15]-0x7fff-((m[14]>>16)&1)
;b=(m[15]>>16)&1;m[14]&=0xffff;sel25519(t,m,1-b);}FOR(i,16){o[2*i]=t[i]&0xff;o[2*i+1]=t[i]>>8;}}static int neq25519(const gf a,const gf b){
u8 c[32],d[32];pack25519(c,a);pack25519(d,b);return crypto_verify_32(c,d);}static u8 par25519(const gf a){u8 d[32];pack25519(d,a);return d[0
]&1;}sv unpack25519(gf o,const u8*n){int i;FOR(i,16)o[i]=n[2*i]+((i64)n[2*i+1]<<8);o[15]&=0x7fff;}sv A(gf o,const gf a,const gf b){int i;FOR
(i,16)o[i]=a[i]+b[i];}sv Z(gf o,const gf a,const gf b){int i;FOR(i,16)o[i]=a[i]-b[i];}sv M(gf o,const gf a,const gf b){i64 i,j,t[31];FOR(i,
31)t[i]=0;FOR(i,16)FOR(j,16)t[i+j]+=a[i]*b[j];FOR(i,15)t[i]+=38*t[i+16];FOR(i,16)o[i]=t[i];car25519(o);car25519(o);}sv S(gf o,const gf a){M(
o,a,a);}sv inv25519(gf o,const gf i){gf c;int a;FOR(a,16)c[a]=i[a];for(a=253;a>=0;a--){S(c,c);if(a!=2&&a!=4)M(c,c,i);}FOR(a,16)o[a]=c[a];}sv
pow2523(gf o,const gf i){gf c;int a;FOR(a,16)c[a]=i[a];for(a=250;a>=0;a--){S(c,c);if(a!=1)M(c,c,i);}FOR(a,16)o[a]=c[a];}int
crypto_scalarmult(u8*q,const u8*n,const u8*p){u8 z[32];i64 x[96],r,i;gf a,b,c,d,e,f;FOR(i,31)z[i]=n[i];z[31]=(n[31]&127)|64;z[0]&=248;
unpack25519(x,p);FOR(i,16){b[i]=x[i];d[i]=a[i]=c[i]=0;}a[0]=d[0]=1;for(i=254;i>=0;--i){r=(z[i>>3]>>(i&7))&1;sel25519(a,b,r);sel25519(c,d,r);
A(e,a,c);Z(a,a,c);A(c,b,d);Z(b,b,d);S(d,e);S(f,a);M(a,c,a);M(c,b,e);A(e,a,c);Z(a,a,c);S(b,a);Z(c,d,f);M(a,c,_121665);A(a,a,d);M(c,c,a);M(a,d
,f);M(d,b,x);S(b,e);sel25519(a,b,r);sel25519(c,d,r);}FOR(i,16){x[i+32]=a[i];x[i+48]=c[i];x[i+64]=b[i];x[i+80]=d[i];}inv25519(x+48,x+48);M(x+
32,x+32,x+48);pack25519(q,x+32);return 0;}int crypto_scalarmult_base(u8*q,const u8*n){return crypto_scalarmult(q,n,_9);}int
crypto_box_keypair(u8*y,u8*x){randombytes(x,32);return crypto_scalarmult_base(y,x);}int crypto_box_beforenm(u8*k,const u8*y,const u8*x){u8 s
[32];crypto_scalarmult(s,x,y);return crypto_core_hsalsa20(k,_0,s,sigma);}int crypto_box_afternm(u8*c,const u8*m,u64 d,const u8*n,const u8*k)
{return crypto_secretbox(c,m,d,n,k);}int crypto_box_open_afternm(u8*m,const u8*c,u64 d,const u8*n,const u8*k){return crypto_secretbox_open(m
,c,d,n,k);}int crypto_box(u8*c,const u8*m,u64 d,const u8*n,const u8*y,const u8*x){u8 k[32];crypto_box_beforenm(k,y,x);return
crypto_box_afternm(c,m,d,n,k);}int crypto_box_open(u8*m,const u8*c,u64 d,const u8*n,const u8*y,const u8*x){u8 k[32];crypto_box_beforenm(k,y,
x);return crypto_box_open_afternm(m,c,d,n,k);}static u64 R(u64 x,int c){return(x>>c)|(x<<(64-c));}static u64 Ch(u64 x,u64 y,u64 z){return(x&
y)^(~x&z);}static u64 Maj(u64 x,u64 y,u64 z){return(x&y)^(x&z)^(y&z);}static u64 Sigma0(u64 x){return R(x,28)^R(x,34)^R(x,39);}static u64
Sigma1(u64 x){return R(x,14)^R(x,18)^R(x,41);}static u64 sigma0(u64 x){return R(x,1)^R(x,8)^(x>>7);}static u64 sigma1(u64 x){return R(x,19)^
R(x,61)^(x>>6);}static const u64 K[80]={0x428a2f98d728ae22ULL,0x7137449123ef65cdULL,0xb5c0fbcfec4d3b2fULL,0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL,0x59f111f1b605d019ULL,0x923f82a4af194f9bULL,0xab1c5ed5da6d8118ULL,0xd807aa98a3030242ULL,0x12835b0145706fbeULL,
0x243185be4ee4b28cULL,0x550c7dc3d5ffb4e2ULL,0x72be5d74f27b896fULL,0x80deb1fe3b1696b1ULL,0x9bdc06a725c71235ULL,0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL,0xefbe4786384f25e3ULL,0x0fc19dc68b8cd5b5ULL,0x240ca1cc77ac9c65ULL,0x2de92c6f592b0275ULL,0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL,0x76f988da831153b5ULL,0x983e5152ee66dfabULL,0xa831c66d2db43210ULL,0xb00327c898fb213fULL,0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL,0xd5a79147930aa725ULL,0x06ca6351e003826fULL,0x142929670a0e6e70ULL,0x27b70a8546d22ffcULL,0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL,0x53380d139d95b3dfULL,0x650a73548baf63deULL,0x766a0abb3c77b2a8ULL,0x81c2c92e47edaee6ULL,0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL,0xa81a664bbc423001ULL,0xc24b8b70d0f89791ULL,0xc76c51a30654be30ULL,0xd192e819d6ef5218ULL,0xd69906245565a910ULL,
0xf40e35855771202aULL,0x106aa07032bbd1b8ULL,0x19a4c116b8d2d0c8ULL,0x1e376c085141ab53ULL,0x2748774cdf8eeb99ULL,0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL,0x4ed8aa4ae3418acbULL,0x5b9cca4f7763e373ULL,0x682e6ff3d6b2b8a3ULL,0x748f82ee5defb2fcULL,0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL,0x8cc702081a6439ecULL,0x90befffa23631e28ULL,0xa4506cebde82bde9ULL,0xbef9a3f7b2c67915ULL,0xc67178f2e372532bULL,
0xca273eceea26619cULL,0xd186b8c721c0c207ULL,0xeada7dd6cde0eb1eULL,0xf57d4f7fee6ed178ULL,0x06f067aa72176fbaULL,0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL,0x1b710b35131c471bULL,0x28db77f523047d84ULL,0x32caab7b40c72493ULL,0x3c9ebe0a15c9bebcULL,0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL,0x597f299cfc657e2aULL,0x5fcb6fab3ad6faecULL,0x6c44198c4a475817ULL};int crypto_hashblocks(u8*x,const u8*m,u64 n){u64 z[
8],b[8],a[8],w[16],t;int i,j;FOR(i,8)z[i]=a[i]=dl64(x+8*i);while(n>=128){FOR(i,16)w[i]=dl64(m+8*i);FOR(i,80){FOR(j,8)b[j]=a[j];t=a[7]+Sigma1
(a[4])+Ch(a[4],a[5],a[6])+K[i]+w[i%16];b[7]=t+Sigma0(a[0])+Maj(a[0],a[1],a[2]);b[3]+=t;FOR(j,8)a[(j+1)%8]=b[j];if(i%16==15)FOR(j,16)w[j]+=w[
(j+9)%16]+sigma0(w[(j+1)%16])+sigma1(w[(j+14)%16]);}FOR(i,8){a[i]+=z[i];z[i]=a[i];}m+=128;n-=128;}FOR(i,8)ts64(x+8*i,z[i]);return n;}static
const u8 iv[64]={0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08,0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b,0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b,
0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1,0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1,0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f,0x1f,0x83,0xd9,0xab,
0xfb,0x41,0xbd,0x6b,0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79};int crypto_hash(u8*out,const u8*m,u64 n){u8 h[64],x[256];u64 i,b=n;FOR(i,64)h[i
]=iv[i];crypto_hashblocks(h,m,n);m+=n;n&=127;m-=n;FOR(i,256)x[i]=0;FOR(i,n)x[i]=m[i];x[n]=128;n=256-128*(n<112);x[n-9]=b>>61;ts64(x+n-8,b<<3
);crypto_hashblocks(h,x,n);FOR(i,64)out[i]=h[i];return 0;}sv add(gf p[4],gf q[4]){gf a,b,c,d,t,e,f,g,h;Z(a,p[1],p[0]);Z(t,q[1],q[0]);M(a,a,t
);A(b,p[0],p[1]);A(t,q[0],q[1]);M(b,b,t);M(c,p[3],q[3]);M(c,c,D2);M(d,p[2],q[2]);A(d,d,d);Z(e,b,a);Z(f,d,c);A(g,d,c);A(h,b,a);M(p[0],e,f);M(
p[1],h,g);M(p[2],g,f);M(p[3],e,h);}sv cswap(gf p[4],gf q[4],u8 b){int i;FOR(i,4)sel25519(p[i],q[i],b);}sv pack(u8*r,gf p[4]){gf tx,ty,zi;
inv25519(zi,p[2]);M(tx,p[0],zi);M(ty,p[1],zi);pack25519(r,ty);r[31]^=par25519(tx)<<7;}sv scalarmult(gf p[4],gf q[4],const u8*s){int i;
set25519(p[0],gf0);set25519(p[1],gf1);set25519(p[2],gf1);set25519(p[3],gf0);for(i=255;i>=0;--i){u8 b=(s[i/8]>>(i&7))&1;cswap(p,q,b);add(q,p)
;add(p,p);cswap(p,q,b);}}sv scalarbase(gf p[4],const u8*s){gf q[4];set25519(q[0],X);set25519(q[1],Y);set25519(q[2],gf1);M(q[3],X,Y);
scalarmult(p,q,s);}int crypto_sign_keypair(u8*pk,u8*sk){u8 d[64];gf p[4];int i;randombytes(sk,32);crypto_hash(d,sk,32);d[0]&=248;d[31]&=127;
d[31]|=64;scalarbase(p,d);pack(pk,p);FOR(i,32)sk[32+i]=pk[i];return 0;}static const u64 L[32]={0xed,0xd3,0xf5,0x5c,0x1a,0x63,0x12,0x58,0xd6,
0x9c,0xf7,0xa2,0xde,0xf9,0xde,0x14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x10};sv modL(u8*r,i64 x[64]){i64 carry,i,j;for(i=63;i>=32;--i){carry=0;for
(j=i-32;j<i-12;++j){x[j]+=carry-16*x[i]*L[j-(i-32)];carry=(x[j]+128)>>8;x[j]-=carry<<8;}x[j]+=carry;x[i]=0;}carry=0;FOR(j,32){x[j]+=carry-(x
[31]>>4)*L[j];carry=x[j]>>8;x[j]&=255;}FOR(j,32)x[j]-=carry*L[j];FOR(i,32){x[i+1]+=x[i]>>8;r[i]=x[i]&255;}}sv reduce(u8*r){i64 x[64],i;FOR(i
,64)x[i]=(u64)r[i];FOR(i,64)r[i]=0;modL(r,x);}int crypto_sign(u8*sm,u64*smlen,const u8*m,u64 n,const u8*sk){u8 d[64],h[64],r[64];i64 i,j,x[
64];gf p[4];crypto_hash(d,sk,32);d[0]&=248;d[31]&=127;d[31]|=64;*smlen=n+64;FOR(i,n)sm[64+i]=m[i];FOR(i,32)sm[32+i]=d[32+i];crypto_hash(r,sm
+32,n+32);reduce(r);scalarbase(p,r);pack(sm,p);FOR(i,32)sm[i+32]=sk[i+32];crypto_hash(h,sm,n+64);reduce(h);FOR(i,64)x[i]=0;FOR(i,32)x[i]=(
u64)r[i];FOR(i,32)FOR(j,32)x[i+j]+=h[i]*(u64)d[j];modL(sm+32,x);return 0;}static int unpackneg(gf r[4],const u8 p[32]){gf t,chk,num,den,den2
,den4,den6;set25519(r[2],gf1);unpack25519(r[1],p);S(num,r[1]);M(den,num,D);Z(num,num,r[2]);A(den,r[2],den);S(den2,den);S(den4,den2);M(den6,
den4,den2);M(t,den6,num);M(t,t,den);pow2523(t,t);M(t,t,num);M(t,t,den);M(t,t,den);M(r[0],t,den);S(chk,r[0]);M(chk,chk,den);if(neq25519(chk,
num))M(r[0],r[0],I);S(chk,r[0]);M(chk,chk,den);if(neq25519(chk,num))return-1;if(par25519(r[0])==(p[31]>>7))Z(r[0],gf0,r[0]);M(r[3],r[0],r[1]
);return 0;}int crypto_sign_open(u8*m,u64*mlen,const u8*sm,u64 n,const u8*pk){int i;u8 t[32],h[64];gf p[4],q[4];*mlen= -1;if(n<64)return-1;
if(unpackneg(q,pk))return-1;FOR(i,n)m[i]=sm[i];FOR(i,32)m[i+32]=pk[i];crypto_hash(h,m,n);reduce(h);scalarmult(p,q,h);scalarbase(q,sm+32);add
(p,q);pack(t,p);n-=64;if(crypto_verify_32(sm,t)){FOR(i,n)m[i]=0;return-1;}FOR(i,n)m[i]=sm[i+64];*mlen=n;return 0;}

B A Python script to convert tweetnacl.c into the 100 tweets

import re
import sys

output = ’’

while True:
line = sys.stdin.readline()
if not line: break
if line[0] == ’#’:

if output:
print output

TweetNaCl: A crypto library in 100 tweets 15

output = ’’
print line.strip()

else:
x = re.findall(’\w+|\W’,line)
for u in x:

if not u.isspace():
if len(output) + len(u) > 140:

print output
output = ’’

if (re.match(’\w’,output[-1:]) and re.match(’\w’,u[:1])) or (output[-1:] == ’=’ and u[:1] == ’-’):
if len(output) + 1 + len(u) > 140:

print output
output = ’’

else:
output += ’ ’

output += u

print output

C A Python script to print tweetnacl.h

print ’#ifndef TWEETNACL_H’
print ’#define TWEETNACL_H’

for z in [
’auth:hmacsha512256/32/32:BYTES,KEYBYTES:,_verify:qpup,ppup’,
’box:curve25519xsalsa20poly1305/32/32/32/24/32/16:PUBLICKEYBYTES,SECRETKEYBYTES,BEFORENMBYTES,NONCEBYTES,ZEROBYTES,BOXZEROBYTES:’
+ ’,_open,_keypair,_beforenm,_afternm,_open_afternm:qpuppp,qpuppp,qq,qpp,qpupp,qpupp’,
’core:salsa20/64/16/32/16,hsalsa20/32/16/32/16:OUTPUTBYTES,INPUTBYTES,KEYBYTES,CONSTBYTES::qppp’,
’hashblocks:sha512/64/128,sha256/32/64:STATEBYTES,BLOCKBYTES::qpu’,
’hash:sha512/64,sha256/32:BYTES::qpu’,
’onetimeauth:poly1305/16/32:BYTES,KEYBYTES:,_verify:qpup,ppup’,
’scalarmult:curve25519/32/32:BYTES,SCALARBYTES:,_base:qpp,qp’,
’secretbox:xsalsa20poly1305/32/24/32/16:KEYBYTES,NONCEBYTES,ZEROBYTES,BOXZEROBYTES:,_open:qpupp,qpupp’,
’sign:ed25519/64/32/64:BYTES,PUBLICKEYBYTES,SECRETKEYBYTES:,_open,_keypair:qvpup,qvpup,qq’,
’stream:xsalsa20/32/24,salsa20/32/8:KEYBYTES,NONCEBYTES:,_xor:qupp,qpupp’,
’verify:16/16,32/32:BYTES::pp’
]:

x,q,s,f,g = [i.split(’,’) for i in z.split(’:’)]
o = ’crypto_’+x[0]
sel = 1
for p in q:

p = p.split(’/’)
op = o+’_’+p[0]
opi = op+’_’+’tweet’
if sel:

print ’#define ’+o+’_PRIMITIVE "’+p[0]+’"’
for m in f+[’_’+m for m in s+[’IMPLEMENTATION’,’VERSION’]]: print ’#define ’+o+m+’ ’+op+m
sel = 0

for j in range(len(s)): print ’#define ’+opi+’_’+s[j]+’ ’+str(p[j+1])
for j in range(len(f)):

a = g[j].replace(’v’,’u *’).replace(’u’,’,unsigned long long’).replace(’q’,’,unsigned char *’).replace(’p’,’,const unsigned char *’)
print ’extern int ’+opi+f[j]+’(’+a[1:]+’);’

print ’#define ’+opi+’_VERSION "-"’
for m in f+[’_’+m for m in s+[’VERSION’]]: print ’#define ’+op+m+’ ’+opi+m
print ’#define ’+op+’_IMPLEMENTATION "’+o+’/’+p[0]+’/tweet’+’"’

print ’#endif’

D Table of symbols

name type meaning

_0 const u8[16] {0}

_9 const u8[32] {9}

_121665 const gf {0xDB41,1}

A function add 256-bit integers, radix 216

add function add points on Edwards curve
add1305 function add 136-bit integers, radix 28

car25519 function reduce mod 2255 − 19, radix 216

Ch(x,y,z) function ((x & y) ^ (~x & z))

core function merged crypto_core_salsa20, crypto_core_hsalsa20
cswap function conditionally swap curve points
D const gf Edwards curve parameter
D2 const gf Edwards curve parameter, doubled
dl64 function load 64-bit integer big-endian
FOR(i,n) macro for (i = 0;i < n;++i)

gf typedef i64 [16], representing 256-bit integer in radix 216

gf0 const gf {0}

gf1 const gf {1}

I const gf
√
−1 mod 2255 − 19

i64 typedef signed twos-complement 64-bit integer (long long)
inv25519 function power 2255 − 21 mod 2255 − 19
iv const u8[64] initialization vector for SHA-512

16 Bernstein, van Gastel, Janssen, Lange, Schwabe, Smetsers

K const u64[80] constants for SHA-512
L const u64[32] prime order of base point
L32 function rotate 32-bit integer left
ld32 function load 32-bit integer little-endian
M function multiply mod 2255 − 19, radix 216

Maj(x,y,z) function ((x & y) ^ (x & z) ^ (y & z))

minusp const u32[17] {5,0,...,0,252}

modL function freeze mod order of base point, radix 28

neq25519 function compare mod 2255 − 19
pack function freeze and store curve point
pack25519 function freeze integer mod 2255 − 19 and store
par25519 function parity of integer mod 2255 − 19
pow2523 function power 2252 − 3 mod 2255 − 19
R function rotate 64-bit integer right
reduce function freeze 512-bit string mod order of base point
S function square mod 2255 − 19, radix 216

scalarbase function scalar multiplication by base point on Edwards curve
scalarmult function scalar multiplication on Edwards curve
sel25519 function 256-bit conditional swap
set25519 function copy 256-bit integer
sigma const u8[16] Salsa20 constant: "expand 32-byte k"

sigma0(x) function (R(x, 1) ^ R(x, 8) ^ (x >> 7))

Sigma0(x) function (R(x,28) ^ R(x,34) ^ R(x,39))

sigma1(x) function (R(x,19) ^ R(x,61) ^ (x >> 6))

Sigma1(x) function (R(x,14) ^ R(x,18) ^ R(x,41))

st32 function store 32-bit integer little-endian
sv macro static void

ts64 function store 64-bit integer big-endian
u8 typedef unsigned 8-bit integer (unsigned char)
u32 typedef unsigned ≥32-bit integer (unsigned long)
u64 typedef unsigned 64-bit integer (unsigned long long)
unpack25519 function load integer mod 2255 − 19
unpackneg function load curve point
vn function merged crypto_verify_16, crypto_verify_32
X const gf x-coordinate of base point
Y const gf y-coordinate of base point
Z function subtract 256-bit integers, radix 216

	TweetNaCl: A crypto library in 100 tweets

